Spatiotemporal dynamics of ionic reorganization near biological membrane interfaces

Hyeongjoo Row, Joshua B. Fernandes, Kranthi K. Mandadapu, Karthik Shekhar
{"title":"Spatiotemporal dynamics of ionic reorganization near biological membrane interfaces","authors":"Hyeongjoo Row, Joshua B. Fernandes, Kranthi K. Mandadapu, Karthik Shekhar","doi":"arxiv-2407.11947","DOIUrl":null,"url":null,"abstract":"Electrical signals in excitable cells involve spatially localized ionic\nfluxes through ion channels and pumps on cellular lipid membranes. Common\napproaches to understand how these localized fluxes spread assume that the\nmembrane and the surrounding electrolyte comprise an equivalent circuit of\ncapacitors and resistors, which ignores the localized nature of transmembrane\nion transport, the resulting ionic gradients and electric fields, and their\nspatiotemporal relaxation. Here, we consider a model of localized ion pumping\nacross a lipid membrane, and use theory and simulation to investigate how the\nelectrochemical signal propagates spatiotemporally in- and out-of-plane along\nthe membrane. The localized pumping generates long-ranged electric fields with\nthree distinct scaling regimes along the membrane: a constant potential\nnear-field region, an intermediate \"monopolar\" region, and a far-field\n\"dipolar\" region. Upon sustained pumping, the monopolar region expands radially\nin-plane with a steady speed that is enhanced by the dielectric mismatch and\nthe finite thickness of the lipid membrane. For unmyelinated lipid membranes in\nphysiological settings, we find remarkably fast propagation speeds of $\\sim\\!40\n\\, \\mathrm{m/s}$, allowing faster ionic reorganization compared to bare\ndiffusion. Together, our work shows that transmembrane ionic fluxes induce\ntransient long-ranged electric fields in electrolyte solutions, which may play\nhitherto unappreciated roles in biological signaling.","PeriodicalId":501170,"journal":{"name":"arXiv - QuanBio - Subcellular Processes","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Subcellular Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.11947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electrical signals in excitable cells involve spatially localized ionic fluxes through ion channels and pumps on cellular lipid membranes. Common approaches to understand how these localized fluxes spread assume that the membrane and the surrounding electrolyte comprise an equivalent circuit of capacitors and resistors, which ignores the localized nature of transmembrane ion transport, the resulting ionic gradients and electric fields, and their spatiotemporal relaxation. Here, we consider a model of localized ion pumping across a lipid membrane, and use theory and simulation to investigate how the electrochemical signal propagates spatiotemporally in- and out-of-plane along the membrane. The localized pumping generates long-ranged electric fields with three distinct scaling regimes along the membrane: a constant potential near-field region, an intermediate "monopolar" region, and a far-field "dipolar" region. Upon sustained pumping, the monopolar region expands radially in-plane with a steady speed that is enhanced by the dielectric mismatch and the finite thickness of the lipid membrane. For unmyelinated lipid membranes in physiological settings, we find remarkably fast propagation speeds of $\sim\!40 \, \mathrm{m/s}$, allowing faster ionic reorganization compared to bare diffusion. Together, our work shows that transmembrane ionic fluxes induce transient long-ranged electric fields in electrolyte solutions, which may play hitherto unappreciated roles in biological signaling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物膜界面附近离子重组的时空动力学
可兴奋细胞中的电信号涉及通过细胞脂膜上的离子通道和泵产生的空间局部离子流。理解这些局部通量如何扩散的常见方法假定膜和周围电解质由电容器和电阻器组成等效电路,这忽略了跨膜离子传输的局部性、由此产生的离子梯度和电场及其时空弛豫。在这里,我们考虑了局部离子泵过脂质膜的模型,并利用理论和模拟研究了电化学信号如何沿膜在平面内外进行时空传播。局部泵浦产生的长程电场沿膜有三种不同的缩放状态:恒定电位的近场区、中间的 "单极 "区和远场的 "双极 "区。持续抽水时,单极区以稳定的速度沿径向向平面内扩展,介电失配和有限厚度的脂膜增强了这一速度。对于生理环境中未髓鞘化的脂膜,我们发现其传播速度非常快:$/sim/!40\, \mathrm{m/s}$,与双向扩散相比,离子重组速度更快。总之,我们的工作表明,跨膜离子通量在电解质溶液中诱导了瞬时长范围电场,这可能在生物信号传递中发挥着迄今尚未被重视的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Causal loop and Stock-Flow Modeling of Signal Transduction Pathways Transient contacts between filaments impart its elasticity to branched actin Ultra-rapid, Quantitative, Label-free Antibiotic Susceptibility Testing via Optically Detected Purine Metabolites Intracellular order formation through stepwise phase transitions A Novel Use of Pseudospectra in Mathematical Biology: Understanding HPA Axis Sensitivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1