{"title":"Dynamics of a two-level atom in the presence of a medium-assisted thermal field","authors":"Razieh Gonouiezadeh and Hassan Safari","doi":"10.1088/1555-6611/ad4bb5","DOIUrl":null,"url":null,"abstract":"In this paper, the time evolution of a two-level atom in the presence of a medium-assisted thermal field is explored through which the formula for the decay rate of an excited atom is generalized in two aspects. The obtained formula applies to a thermal electromagnetic field as well as to the presence of an arbitrary arrangement of magnetoelectric media. In order to be general with respect to the material environment, the Green’s function approach is used. It is shown that the non-zero temperature contributes to the decay rate via an additive term that is equal to the zero-temperature result multiplied by two times the photon number at the atomic transition frequency.","PeriodicalId":17976,"journal":{"name":"Laser Physics","volume":"31 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1555-6611/ad4bb5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the time evolution of a two-level atom in the presence of a medium-assisted thermal field is explored through which the formula for the decay rate of an excited atom is generalized in two aspects. The obtained formula applies to a thermal electromagnetic field as well as to the presence of an arbitrary arrangement of magnetoelectric media. In order to be general with respect to the material environment, the Green’s function approach is used. It is shown that the non-zero temperature contributes to the decay rate via an additive term that is equal to the zero-temperature result multiplied by two times the photon number at the atomic transition frequency.
期刊介绍:
Laser Physics offers a comprehensive view of theoretical and experimental laser research and applications. Articles cover every aspect of modern laser physics and quantum electronics, emphasizing physical effects in various media (solid, gaseous, liquid) leading to the generation of laser radiation; peculiarities of propagation of laser radiation; problems involving impact of laser radiation on various substances and the emerging physical effects, including coherent ones; the applied use of lasers and laser spectroscopy; the processing and storage of information; and more.
The full list of subject areas covered is as follows:
-physics of lasers-
fibre optics and fibre lasers-
quantum optics and quantum information science-
ultrafast optics and strong-field physics-
nonlinear optics-
physics of cold trapped atoms-
laser methods in chemistry, biology, medicine and ecology-
laser spectroscopy-
novel laser materials and lasers-
optics of nanomaterials-
interaction of laser radiation with matter-
laser interaction with solids-
photonics