Rate and Bifurcation Induced Transitions in Asymptotically Slow-Fast Systems

IF 1.7 4区 数学 Q2 MATHEMATICS, APPLIED SIAM Journal on Applied Dynamical Systems Pub Date : 2024-07-15 DOI:10.1137/24m1632000
Samuel Jelbart
{"title":"Rate and Bifurcation Induced Transitions in Asymptotically Slow-Fast Systems","authors":"Samuel Jelbart","doi":"10.1137/24m1632000","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 3, Page 1836-1869, September 2024. <br/> Abstract.This work provides a geometric approach to the study of bifurcation and rate induced transitions in a class of nonautonomous systems referred to herein as asymptotically slow-fast systems, which may be viewed as “intermediate” between the (smaller, resp., larger) classes of asymptotically autonomous and nonautonomous systems. After showing that the relevant systems can be viewed as singular perturbations of a limiting system with a discontinuity in time, we develop an analytical framework for their analysis based on geometric blow-up techniques. We then provide sufficient conditions for the occurrence of bifurcation and rate induced transitions in low dimensions, as well as sufficient conditions for “tracking” in arbitrary (finite) dimensions, i.e., the persistence of an attracting and normally hyperbolic manifold through the transitionary regime. The proofs rely on geometric blow-up, a variant of the Melnikov method which applies on noncompact domains, and general invariant manifold theory. The formalism is applicable in arbitrary (finite) dimensions, and for systems with forward and backward attractors characterized by nontrivial (i.e., nonconstant) dependence on time. The results are demonstrated for low dimensional applications.","PeriodicalId":49534,"journal":{"name":"SIAM Journal on Applied Dynamical Systems","volume":"26 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m1632000","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 3, Page 1836-1869, September 2024.
Abstract.This work provides a geometric approach to the study of bifurcation and rate induced transitions in a class of nonautonomous systems referred to herein as asymptotically slow-fast systems, which may be viewed as “intermediate” between the (smaller, resp., larger) classes of asymptotically autonomous and nonautonomous systems. After showing that the relevant systems can be viewed as singular perturbations of a limiting system with a discontinuity in time, we develop an analytical framework for their analysis based on geometric blow-up techniques. We then provide sufficient conditions for the occurrence of bifurcation and rate induced transitions in low dimensions, as well as sufficient conditions for “tracking” in arbitrary (finite) dimensions, i.e., the persistence of an attracting and normally hyperbolic manifold through the transitionary regime. The proofs rely on geometric blow-up, a variant of the Melnikov method which applies on noncompact domains, and general invariant manifold theory. The formalism is applicable in arbitrary (finite) dimensions, and for systems with forward and backward attractors characterized by nontrivial (i.e., nonconstant) dependence on time. The results are demonstrated for low dimensional applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
渐近慢-快系统中的速率和分岔诱导转变
SIAM 应用动力系统期刊》,第 23 卷第 3 期,第 1836-1869 页,2024 年 9 月。 摘要.本研究提供了一种几何方法,用于研究一类非自治系统的分岔和速率诱导转换,在此称为渐近慢-快系统,可视为渐近自治和非自治系统(较小,或较大)之间的 "中间 "系统。在证明相关系统可被视为具有时间不连续性的极限系统的奇异扰动之后,我们基于几何炸毁技术建立了一个分析框架。然后,我们提供了在低维度上发生分岔和速率诱导转换的充分条件,以及在任意(有限)维度上 "跟踪 "的充分条件,即一个吸引的、正常的双曲流形在过渡体制中的持续性。证明依赖于几何膨胀、适用于非紧凑域的梅尔尼科夫方法变体以及一般不变流形理论。该形式主义适用于任意(有限)维度,以及具有前向和后向吸引子的系统,这些吸引子的特征是对时间的非三维(即非恒定)依赖。结果在低维应用中得到了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
SIAM Journal on Applied Dynamical Systems
SIAM Journal on Applied Dynamical Systems 物理-物理:数学物理
CiteScore
3.60
自引率
4.80%
发文量
74
审稿时长
6 months
期刊介绍: SIAM Journal on Applied Dynamical Systems (SIADS) publishes research articles on the mathematical analysis and modeling of dynamical systems and its application to the physical, engineering, life, and social sciences. SIADS is published in electronic format only.
期刊最新文献
Global Dynamics of Piecewise Smooth Systems with Switches Depending on Both Discrete Times and Status Reduction and Reconstruction of the Oscillator in 1:1:2 Resonance plus an Axially Symmetric Polynomial Perturbation Forward Attraction of Nonautonomous Dynamical Systems and Applications to Navier–Stokes Equations Hawkes Process Modelling for Chemical Reaction Networks in a Random Environment On the Convergence of Nonlinear Averaging Dynamics with Three-Body Interactions on Hypergraphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1