A Case for Application-Aware Space Radiation Tolerance in Orbital Computing

Meiqi Wang, Han Qiu, Longnv Xu, Di Wang, Yuanjie Li, Tianwei Zhang, Jun Liu, Hewu Li
{"title":"A Case for Application-Aware Space Radiation Tolerance in Orbital Computing","authors":"Meiqi Wang, Han Qiu, Longnv Xu, Di Wang, Yuanjie Li, Tianwei Zhang, Jun Liu, Hewu Li","doi":"arxiv-2407.11853","DOIUrl":null,"url":null,"abstract":"We are witnessing a surge in the use of commercial off-the-shelf (COTS)\nhardware for cost-effective in-orbit computing, such as deep neural network\n(DNN) based on-satellite sensor data processing, Earth object detection, and\ntask decision.However, once exposed to harsh space environments, COTS hardware\nis vulnerable to cosmic radiation and suffers from exhaustive single-event\nupsets (SEUs) and multi-unit upsets (MCUs), both threatening the functionality\nand correctness of in-orbit computing.Existing hardware and system software\nprotections against radiation are expensive for resource-constrained COTS\nnanosatellites and overwhelming for upper-layer applications due to their\nrequirement for heavy resource redundancy and frequent reboots. Instead, we\nmake a case for cost-effective space radiation tolerance using application\ndomain knowledge. Our solution for the on-satellite DNN tasks, \\name, exploits\nthe uneven SEU/MCU sensitivity across DNN layers and MCUs' spatial correlation\nfor lightweight radiation-tolerant in-orbit AI computing. Our extensive\nexperiments using Chaohu-1 SAR satellite payloads and a hardware-in-the-loop,\nreal data-driven space radiation emulator validate that RedNet can suppress the\ninfluence of radiation errors to $\\approx$ 0 and accelerate the on-satellite\nDNN inference speed by 8.4%-33.0% at negligible extra costs.","PeriodicalId":501168,"journal":{"name":"arXiv - CS - Emerging Technologies","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.11853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We are witnessing a surge in the use of commercial off-the-shelf (COTS) hardware for cost-effective in-orbit computing, such as deep neural network (DNN) based on-satellite sensor data processing, Earth object detection, and task decision.However, once exposed to harsh space environments, COTS hardware is vulnerable to cosmic radiation and suffers from exhaustive single-event upsets (SEUs) and multi-unit upsets (MCUs), both threatening the functionality and correctness of in-orbit computing.Existing hardware and system software protections against radiation are expensive for resource-constrained COTS nanosatellites and overwhelming for upper-layer applications due to their requirement for heavy resource redundancy and frequent reboots. Instead, we make a case for cost-effective space radiation tolerance using application domain knowledge. Our solution for the on-satellite DNN tasks, \name, exploits the uneven SEU/MCU sensitivity across DNN layers and MCUs' spatial correlation for lightweight radiation-tolerant in-orbit AI computing. Our extensive experiments using Chaohu-1 SAR satellite payloads and a hardware-in-the-loop, real data-driven space radiation emulator validate that RedNet can suppress the influence of radiation errors to $\approx$ 0 and accelerate the on-satellite DNN inference speed by 8.4%-33.0% at negligible extra costs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
轨道计算中应用感知的空间辐射容差案例
然而,一旦暴露在恶劣的太空环境中,商用现成(COTS)硬件就很容易受到宇宙辐射的影响,并遭受单次事件中断(SEUs)和多单元中断(MCUs)的严重破坏,从而威胁到在轨计算的功能性和正确性。对于资源有限的 COTS 纳米卫星来说,现有的硬件和系统软件防辐射措施成本高昂,而且由于需要大量冗余资源和频繁重启,上层应用不堪重负。相反,我们利用应用领域的知识,提出了具有成本效益的空间辐射耐受方案。我们针对卫星上DNN任务的解决方案(name)利用了DNN各层对SEU/MCU敏感度的不均衡性和MCU的空间相关性,实现了轻量级的在轨抗辐射人工智能计算。我们使用巢湖一号合成孔径雷达卫星有效载荷和一个硬件在环、真实数据驱动的空间辐射模拟器进行了广泛的实验,验证了RedNet可以将辐射误差的影响抑制到$\approx$ 0,并以可忽略的额外成本将卫星上DNN推理速度提高8.4%-33.0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pennsieve - A Collaborative Platform for Translational Neuroscience and Beyond Analysing Attacks on Blockchain Systems in a Layer-based Approach Exploring Utility in a Real-World Warehouse Optimization Problem: Formulation Based on Quantun Annealers and Preliminary Results High Definition Map Mapping and Update: A General Overview and Future Directions Detection Made Easy: Potentials of Large Language Models for Solidity Vulnerabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1