Heat Transfer during Downflow Condensation of R21 in Plate-Fin Heat Exchanger with Inclined Texture

IF 1.3 4区 工程技术 Q3 ENGINEERING, MECHANICAL Journal of Engineering Thermophysics Pub Date : 2024-07-17 DOI:10.1134/S1810232824020048
V. V. Kuznetsov, A. S. Shamirzaev
{"title":"Heat Transfer during Downflow Condensation of R21 in Plate-Fin Heat Exchanger with Inclined Texture","authors":"V. V. Kuznetsov,&nbsp;A. S. Shamirzaev","doi":"10.1134/S1810232824020048","DOIUrl":null,"url":null,"abstract":"<p>The paper presents an experimental study of the heat transfer during condensation of modeling freon R21 in downward flow conditions in an element of a plate-fin heat exchanger with inclined-texture perforated fins. The experiments were carried out for mass velocity of 20 to 50 kg/m<sup>2</sup>s and wall subcooling of 0.8 to 1.1 K with a heat exchanger with fin density of 850 fins per meter. The texture on the surface of the perforated fins of the heat exchanger was at angle of 45 degrees to the flow direction and made it possible to significantly enhance the heat transfer in comparison with plain fins. It has been found that the heat transfer coefficient depends on the vapor quality, and at a mass velocity of 20 kg/m<sup>2</sup>s, it exceeds the corresponding value at a velocity of 50 kg/m<sup>2</sup>s because of a thinner condensate film at the top of the texture.</p>","PeriodicalId":627,"journal":{"name":"Journal of Engineering Thermophysics","volume":"33 2","pages":"283 - 288"},"PeriodicalIF":1.3000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S1810232824020048","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The paper presents an experimental study of the heat transfer during condensation of modeling freon R21 in downward flow conditions in an element of a plate-fin heat exchanger with inclined-texture perforated fins. The experiments were carried out for mass velocity of 20 to 50 kg/m2s and wall subcooling of 0.8 to 1.1 K with a heat exchanger with fin density of 850 fins per meter. The texture on the surface of the perforated fins of the heat exchanger was at angle of 45 degrees to the flow direction and made it possible to significantly enhance the heat transfer in comparison with plain fins. It has been found that the heat transfer coefficient depends on the vapor quality, and at a mass velocity of 20 kg/m2s, it exceeds the corresponding value at a velocity of 50 kg/m2s because of a thinner condensate film at the top of the texture.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有倾斜纹理的板翅式热交换器中 R21 的下流冷凝过程中的热传递
摘要 本文对带有倾斜纹理穿孔翅片的板翅式热交换器元件中的模型氟利昂 R21 在向下流动条件下的冷凝传热进行了实验研究。实验在质量速度为 20 至 50 kg/m2s 和壁面过冷度为 0.8 至 1.1 K 的条件下进行,换热器的翅片密度为每米 850 片。热交换器穿孔翅片表面的纹理与流向成 45 度角,与普通翅片相比,能显著提高传热效果。研究发现,传热系数取决于蒸汽质量,在质量速度为 20 千克/平方米时,传热系数超过了质量速度为 50 千克/平方米时的相应值,这是因为纹理顶部的冷凝膜较薄。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Engineering Thermophysics
Journal of Engineering Thermophysics THERMODYNAMICS-ENGINEERING, MECHANICAL
CiteScore
2.30
自引率
12.50%
发文量
0
审稿时长
3 months
期刊介绍: Journal of Engineering Thermophysics is an international peer reviewed journal that publishes original articles. The journal welcomes original articles on thermophysics from all countries in the English language. The journal focuses on experimental work, theory, analysis, and computational studies for better understanding of engineering and environmental aspects of thermophysics. The editorial board encourages the authors to submit papers with emphasis on new scientific aspects in experimental and visualization techniques, mathematical models of thermophysical process, energy, and environmental applications. Journal of Engineering Thermophysics covers all subject matter related to thermophysics, including heat and mass transfer, multiphase flow, conduction, radiation, combustion, thermo-gas dynamics, rarefied gas flow, environmental protection in power engineering, and many others.
期刊最新文献
Features of Oxidation of Bismuth by High-Density Water-Oxygen Fluid LDA-Based Experimental Investigation of Velocity Pulsations in the Vortex Tube Hysteresis Phenomena at Boiling in Liquid Film Flowing down the Tubes with Microarc Oxidation Coating Investigation of the Local Equilibrium Approximation in a Planar Momentumless Turbulent Wake in a Passively Stratified Fluid Experimental Study of Characteristics of Activated Carbon Produced from Pine Nut Shells by Pyrolysis Technology Followed by Steam-Gas Activation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1