Quantum geometric Wigner construction for $D(G)$ and braided racks

Shahn Majid, Leo Sean McCormack
{"title":"Quantum geometric Wigner construction for $D(G)$ and braided racks","authors":"Shahn Majid, Leo Sean McCormack","doi":"arxiv-2407.11835","DOIUrl":null,"url":null,"abstract":"The quantum double $D(G)=\\Bbb C(G)\\rtimes \\Bbb C G$ of a finite group plays\nan important role in the Kitaev model for quantum computing, as well as in\nassociated TQFT's, as a kind of Poincar\\'e group. We interpret the known\nconstruction of its irreps, which are quasiparticles for the model, in a\ngeometric manner strictly analogous to the Wigner construction for the usual\nPoincar\\'e group of $\\Bbb R^{1,3}$. Irreps are labelled by pairs $(C, \\pi)$,\nwhere $C$ is a conjugacy class in the role of a mass-shell, and $\\pi$ is a\nrepresentation of the isotropy group $C_G$ in the role of spin. The geometric\npicture entails $D^\\vee(G)\\to \\Bbb C(C_G)\\blacktriangleright\\!\\!\\!\\!< \\Bbb C G$\nas a quantum homogeneous bundle where the base is $G/C_G$, and $D^\\vee(G)\\to\n\\Bbb C(G)$ as another homogeneous bundle where the base is the group algebra\n$\\Bbb C G$ as noncommutative spacetime. Analysis of the latter leads to a\nduality whereby the differential calculus and solutions of the wave equation on\n$\\Bbb C G$ are governed by irreps and conjugacy classes of $G$ respectively,\nwhile the same picture on $\\Bbb C(G)$ is governed by the reversed data.\nQuasiparticles as irreps of $D(G)$ also turn out to classify irreducible\nbicovariant differential structures $\\Omega^1_{C, \\pi}$ on $D^\\vee(G)$ and\nthese in turn correspond to braided-Lie algebras $\\mathcal{L}_{C, \\pi}$ in the\nbraided category of $G$-crossed modules, which we call `braided racks' and\nstudy. We show under mild assumptions that $U(\\mathcal{L}_{C,\\pi})$ quotients\nto a braided Hopf algebra $B_{C,\\pi}$ related by transmutation to a\ncoquasitriangular Hopf algebra $H_{C,\\pi}$.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.11835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The quantum double $D(G)=\Bbb C(G)\rtimes \Bbb C G$ of a finite group plays an important role in the Kitaev model for quantum computing, as well as in associated TQFT's, as a kind of Poincar\'e group. We interpret the known construction of its irreps, which are quasiparticles for the model, in a geometric manner strictly analogous to the Wigner construction for the usual Poincar\'e group of $\Bbb R^{1,3}$. Irreps are labelled by pairs $(C, \pi)$, where $C$ is a conjugacy class in the role of a mass-shell, and $\pi$ is a representation of the isotropy group $C_G$ in the role of spin. The geometric picture entails $D^\vee(G)\to \Bbb C(C_G)\blacktriangleright\!\!\!\!< \Bbb C G$ as a quantum homogeneous bundle where the base is $G/C_G$, and $D^\vee(G)\to \Bbb C(G)$ as another homogeneous bundle where the base is the group algebra $\Bbb C G$ as noncommutative spacetime. Analysis of the latter leads to a duality whereby the differential calculus and solutions of the wave equation on $\Bbb C G$ are governed by irreps and conjugacy classes of $G$ respectively, while the same picture on $\Bbb C(G)$ is governed by the reversed data. Quasiparticles as irreps of $D(G)$ also turn out to classify irreducible bicovariant differential structures $\Omega^1_{C, \pi}$ on $D^\vee(G)$ and these in turn correspond to braided-Lie algebras $\mathcal{L}_{C, \pi}$ in the braided category of $G$-crossed modules, which we call `braided racks' and study. We show under mild assumptions that $U(\mathcal{L}_{C,\pi})$ quotients to a braided Hopf algebra $B_{C,\pi}$ related by transmutation to a coquasitriangular Hopf algebra $H_{C,\pi}$.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
D(G)$和编织架的量子几何维格纳构造
有限群的量子双元 $D(G)=\Bbb C(G)\rtimes \Bbb C G$ 作为一种 Poincar\'e 群,在量子计算的基塔耶夫模型以及相关的 TQFT 中扮演着重要角色。我们以严格类似于维格纳(Wigner)对 $\Bbb R^{1,3}$ 通常的Poincar/'e群的构造的年龄计量方式来解释它的irreps的已知构造,irreps是该模型的准粒子。非等离子是由一对$(C, \pi)$标记的,其中$C$是一个共轭类,起质量壳的作用,而$\pi$是各向同性群$C_G$的表示,起自旋的作用。几何图景需要把 $D^\vee(G)\to\Bbb C(C_G)\blacktriangleright\!\!\!\!<\Bbb C G$ 作为量子同质束,其中基是 $G/C_G$,而把 $D^\vee(G)\to\Bbb C(G)$ 作为另一个同质束,其中基是作为非交换时空的群代数 $\Bbb C G$。通过对后者的分析,我们可以发现在$\Bbb C G$上的微分计算和波方程的解分别受$G$的不可逆性和共轭类的支配,而在$\Bbb C(G)$上的同一图景则受相反数据的支配。作为 $D(G)$ 的 irreps 的准粒子也会在 $D^\vee(G)$ 上划分出不可还原的微分结构 $/Omega^1_{C,\pi}$,这些结构反过来又对应于 $G$ 交叉模组的辫子类中的辫子-李代数 $\mathcal{L}_{C,\pi}$,我们称之为 "辫子架 "并对其进行了研究。我们在温和的假设条件下证明,$U(\mathcal{L}_{C,\pi})$商于一个通过嬗变与等边三角形霍普夫代数$H_{C,\pi}$相关的辫状霍普夫代数$B_{C,\pi}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Semisimplicity of module categories of certain affine vertex operator superalgebras Basic monodromy operator for quantum superalgebra Evaluation 2-Functors for Kac-Moody 2-Categories of Type A2 Bimodules over twisted Zhu algebras and a construction of tensor product of twisted modules for vertex operator algebras Poisson brackets and coaction maps of regularized holonomies of the KZ equation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1