Characteristics of Power Supercapacitor with Electrodes Made of Composite Carbon Nanopaper Based on Carbon Nanotubes and Resorcinol–Formaldehyde Xerogel

IF 1.1 4区 工程技术 Q4 ELECTROCHEMISTRY Russian Journal of Electrochemistry Pub Date : 2024-07-17 DOI:10.1134/S1023193524700113
A. V. Krestinin, A. B. Tarasenko, S. A. Kochanova, S. A. Kislenko
{"title":"Characteristics of Power Supercapacitor with Electrodes Made of Composite Carbon Nanopaper Based on Carbon Nanotubes and Resorcinol–Formaldehyde Xerogel","authors":"A. V. Krestinin,&nbsp;A. B. Tarasenko,&nbsp;S. A. Kochanova,&nbsp;S. A. Kislenko","doi":"10.1134/S1023193524700113","DOIUrl":null,"url":null,"abstract":"<p>The nanocomposite of a resorcinol–formaldehyde xerogel and carbon nanotubes after carbonation was obtained in the form of a composite carbon nanopaper (CCNP) with the thickness of 100–300 microns, the density from 0.1 to 0.5 g/cm<sup>3</sup> and the electronic conductivity of more than 10 S/cm. The microporous structure of the nanopaper is formed by carbonized resorcinol–formaldehyde xerogel, and the mesoporous structure is formed by the nanotube framework. Previously, the characteristics of nanopaper electrodes in an aqueous electrolyte of 1M H<sub>2</sub>SO<sub>4</sub> were measured, where the maximum capacitance was 155 F/g (56 F/cm<sup>3</sup>). To work with an organic electrolyte, a method for activating CCNP with potassium hydroxide has been developed. In this paper the characteristics of electrodes made of activated nanopaper (a-CCNP) in an organic electrolyte 1 M 1,1-Dimethylpyrrolidinium tetrafluoroborate (DMPBF<sub>4</sub>)/acetonitrile solution were measured. The capacitance in this electrolyte has been reached 70 F/g (27 F/cm<sup>3</sup>). According to measurements on a laboratory assembly of a symmetrical supercapacitor (SC) with electrodes made of CCNP, the characteristics are calculated when the SC operates in the mode of short pulse switching with an efficiency of EF = 95%. In an aqueous electrolyte of 1 M H<sub>2</sub>SO<sub>4</sub> (<i>U</i><sub>0</sub> = 1.0 V), the volumetric energy density was <i>E</i><sub>0.95,SC</sub> = 0.9 W h/L and the volumetric power density was <i>P</i><sub>0.95,SC</sub> = 2.1 kW/L. In 1 M DMPBF<sub>4</sub>/acetonitrile electrolyte (<i>U</i><sub>0</sub> = 2.7 V), the design characteristics of the capacitor were: volumetric energy density <i>E</i><sub>0.95,SC</sub> = 3.8 W h/L and volumetric power density <i>P</i><sub>0.95,SC</sub> = 2.0 kW/L. The specific characteristics of power SCs are compared with electrodes made of activated CCNP and of other carbon materials. In mass production, nanocomposite electrodes are estimated to be cheaper than activated carbon microfibers and significantly cheaper than graphene electrodes.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":"60 7","pages":"513 - 525"},"PeriodicalIF":1.1000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S1023193524700113","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

The nanocomposite of a resorcinol–formaldehyde xerogel and carbon nanotubes after carbonation was obtained in the form of a composite carbon nanopaper (CCNP) with the thickness of 100–300 microns, the density from 0.1 to 0.5 g/cm3 and the electronic conductivity of more than 10 S/cm. The microporous structure of the nanopaper is formed by carbonized resorcinol–formaldehyde xerogel, and the mesoporous structure is formed by the nanotube framework. Previously, the characteristics of nanopaper electrodes in an aqueous electrolyte of 1M H2SO4 were measured, where the maximum capacitance was 155 F/g (56 F/cm3). To work with an organic electrolyte, a method for activating CCNP with potassium hydroxide has been developed. In this paper the characteristics of electrodes made of activated nanopaper (a-CCNP) in an organic electrolyte 1 M 1,1-Dimethylpyrrolidinium tetrafluoroborate (DMPBF4)/acetonitrile solution were measured. The capacitance in this electrolyte has been reached 70 F/g (27 F/cm3). According to measurements on a laboratory assembly of a symmetrical supercapacitor (SC) with electrodes made of CCNP, the characteristics are calculated when the SC operates in the mode of short pulse switching with an efficiency of EF = 95%. In an aqueous electrolyte of 1 M H2SO4 (U0 = 1.0 V), the volumetric energy density was E0.95,SC = 0.9 W h/L and the volumetric power density was P0.95,SC = 2.1 kW/L. In 1 M DMPBF4/acetonitrile electrolyte (U0 = 2.7 V), the design characteristics of the capacitor were: volumetric energy density E0.95,SC = 3.8 W h/L and volumetric power density P0.95,SC = 2.0 kW/L. The specific characteristics of power SCs are compared with electrodes made of activated CCNP and of other carbon materials. In mass production, nanocomposite electrodes are estimated to be cheaper than activated carbon microfibers and significantly cheaper than graphene electrodes.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用基于碳纳米管和间苯二酚-甲醛 Xerogel 的复合碳纳米纸电极的功率超级电容器的特性
摘要 将间苯二酚-甲醛异凝胶和碳纳米管碳化后得到的纳米复合材料为复合碳纳米纸(CCNP),其厚度为100-300微米,密度为0.1-0.5 g/cm3,电子电导率大于10 S/cm。纳米纸的微孔结构由碳化间苯二酚-甲醛 xerogel 形成,中孔结构由纳米管框架形成。此前曾测量过纳米纸电极在 1M H2SO4 水电解质中的特性,其最大电容为 155 F/g(56 F/cm3)。为了使用有机电解质,我们开发了一种用氢氧化钾激活 CCNP 的方法。本文测量了活化纳米纸(a-CNP)电极在 1 M 1,1-二甲基吡咯烷鎓四氟硼酸盐(DMPBF4)/乙腈有机电解质溶液中的特性。在这种电解质中的电容达到了 70 F/g(27 F/cm3)。根据对使用 CCNP 制成的电极的对称超级电容器(SC)实验室组件的测量,计算出了 SC 在短脉冲切换模式下工作时的特性,其效率为 EF = 95%。在 1 M H2SO4 水电解质(U0 = 1.0 V)中,体积能量密度为 E0.95,SC = 0.9 W h/L,体积功率密度为 P0.95,SC = 2.1 kW/L。在 1 M DMPBF4/乙腈电解液(U0 = 2.7 V)中,电容器的设计特性为:体积能量密度 E0.95,SC = 3.8 W h/L,体积功率密度 P0.95,SC = 2.0 kW/L。功率 SC 的具体特性与活性 CCNP 和其他碳材料制成的电极进行了比较。在大规模生产中,纳米复合电极估计比活性碳微纤维便宜,比石墨烯电极便宜得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Russian Journal of Electrochemistry
Russian Journal of Electrochemistry 工程技术-电化学
CiteScore
1.90
自引率
8.30%
发文量
102
审稿时长
6 months
期刊介绍: Russian Journal of Electrochemistry is a journal that covers all aspects of research in modern electrochemistry. The journal welcomes submissions in English or Russian regardless of country and nationality of authors.
期刊最新文献
Role of Nonlocal Electrostatic Effects in the Stabilization of Monovalent Cations in an Aqueous Cavity Surrounded by a Weakly Polar Environment Electrodeposited Composite of Poly-3,4-ethylenedioxythiophene with Fullerenol Photoactive in the Near-IR Range Dimethylglyoximate Derived Nickel Oxide Nanowires for Trace Level Amperometric Detection of Hydroquinone Research Progress of Cobalt Based Phosphide Anode Materials for Sodium-Ion Batteries Electric Double Layer Capacitors: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1