The Interpretation Gap in Text-to-Music Generation Models

Yongyi Zang, Yixiao Zhang
{"title":"The Interpretation Gap in Text-to-Music Generation Models","authors":"Yongyi Zang, Yixiao Zhang","doi":"arxiv-2407.10328","DOIUrl":null,"url":null,"abstract":"Large-scale text-to-music generation models have significantly enhanced music\ncreation capabilities, offering unprecedented creative freedom. However, their\nability to collaborate effectively with human musicians remains limited. In\nthis paper, we propose a framework to describe the musical interaction process,\nwhich includes expression, interpretation, and execution of controls. Following\nthis framework, we argue that the primary gap between existing text-to-music\nmodels and musicians lies in the interpretation stage, where models lack the\nability to interpret controls from musicians. We also propose two strategies to\naddress this gap and call on the music information retrieval community to\ntackle the interpretation challenge to improve human-AI musical collaboration.","PeriodicalId":501178,"journal":{"name":"arXiv - CS - Sound","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Sound","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.10328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Large-scale text-to-music generation models have significantly enhanced music creation capabilities, offering unprecedented creative freedom. However, their ability to collaborate effectively with human musicians remains limited. In this paper, we propose a framework to describe the musical interaction process, which includes expression, interpretation, and execution of controls. Following this framework, we argue that the primary gap between existing text-to-music models and musicians lies in the interpretation stage, where models lack the ability to interpret controls from musicians. We also propose two strategies to address this gap and call on the music information retrieval community to tackle the interpretation challenge to improve human-AI musical collaboration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
文本到音乐生成模型中的解读差距
大规模文本到音乐生成模型极大地增强了音乐创作能力,提供了前所未有的创作自由。然而,它们与人类音乐家有效合作的能力仍然有限。在本文中,我们提出了一个描述音乐交互过程的框架,其中包括表达、解释和执行控制。根据这一框架,我们认为现有的文本到音乐模型与音乐家之间的主要差距在于解释阶段,模型缺乏解释音乐家控制的能力。我们还提出了解决这一差距的两种策略,并呼吁音乐信息检索界解决解释难题,以改善人类与人工智能的音乐合作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Explaining Deep Learning Embeddings for Speech Emotion Recognition by Predicting Interpretable Acoustic Features ESPnet-EZ: Python-only ESPnet for Easy Fine-tuning and Integration Prevailing Research Areas for Music AI in the Era of Foundation Models Egocentric Speaker Classification in Child-Adult Dyadic Interactions: From Sensing to Computational Modeling The T05 System for The VoiceMOS Challenge 2024: Transfer Learning from Deep Image Classifier to Naturalness MOS Prediction of High-Quality Synthetic Speech
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1