Dielectric study of shellac composites through varying filler concentrations

IF 1.7 4区 化学 Q4 CHEMISTRY, PHYSICAL Reaction Kinetics, Mechanisms and Catalysis Pub Date : 2024-07-17 DOI:10.1007/s11144-024-02687-x
Monika Chaparia, Neelam Kumari, Amit Chaurasia, Ravi Kant Choubey, Pushpendra Kumar, Umesh Kumar Dwivedi
{"title":"Dielectric study of shellac composites through varying filler concentrations","authors":"Monika Chaparia,&nbsp;Neelam Kumari,&nbsp;Amit Chaurasia,&nbsp;Ravi Kant Choubey,&nbsp;Pushpendra Kumar,&nbsp;Umesh Kumar Dwivedi","doi":"10.1007/s11144-024-02687-x","DOIUrl":null,"url":null,"abstract":"<div><p>This work presents a comprehensive study on the dielectric properties of shellac-based composites with varying filler concentrations of (SiC) and iron (Fe) particles, complemented by scanning electron microscopy (SEM) analysis. Shellac, a natural biopolymer known for its excellent film-forming abilities, biodegradability, and insulating properties, was chosen as the matrix material. The dielectric properties, including permittivity and dielectric loss, are measured by LCR Meter across a frequency range from 100 Hz to 8 MHz to evaluate the effects of filler concentration. This study reveals that the incorporation of SiC and Fe particles significantly enhances the dielectric constant and exhibits complex frequency-dependent behavior in dielectric loss. SEM analysis provided insights into the microstructural changes induced by the fillers, correlating with the observed dielectric properties. The results indicate that the dielectric performance of shellac composites can be effectively tailored through the precise control of SiC and Fe particle concentrations, attributed to interfacial polarization and Maxwell-Wagner-sillars effects. This work underscores the potential of shellac composites as sustainable, high performance dielectric materials for advanced electronic applications, contributing to the development of eco-friendly electronic devices.</p></div>","PeriodicalId":750,"journal":{"name":"Reaction Kinetics, Mechanisms and Catalysis","volume":"137 6","pages":"3047 - 3057"},"PeriodicalIF":1.7000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Kinetics, Mechanisms and Catalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11144-024-02687-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents a comprehensive study on the dielectric properties of shellac-based composites with varying filler concentrations of (SiC) and iron (Fe) particles, complemented by scanning electron microscopy (SEM) analysis. Shellac, a natural biopolymer known for its excellent film-forming abilities, biodegradability, and insulating properties, was chosen as the matrix material. The dielectric properties, including permittivity and dielectric loss, are measured by LCR Meter across a frequency range from 100 Hz to 8 MHz to evaluate the effects of filler concentration. This study reveals that the incorporation of SiC and Fe particles significantly enhances the dielectric constant and exhibits complex frequency-dependent behavior in dielectric loss. SEM analysis provided insights into the microstructural changes induced by the fillers, correlating with the observed dielectric properties. The results indicate that the dielectric performance of shellac composites can be effectively tailored through the precise control of SiC and Fe particle concentrations, attributed to interfacial polarization and Maxwell-Wagner-sillars effects. This work underscores the potential of shellac composites as sustainable, high performance dielectric materials for advanced electronic applications, contributing to the development of eco-friendly electronic devices.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过改变填料浓度对虫胶复合材料进行介电研究
本研究通过扫描电子显微镜(SEM)分析,全面研究了含有不同浓度填料(SiC)和铁(Fe)颗粒的虫胶基复合材料的介电性能。贝壳粉是一种天然生物聚合物,因其出色的成膜能力、生物降解性和绝缘性能而闻名,被选为基体材料。用 LCR 计测量了介电性能,包括介电常数和介电损耗,频率范围为 100 Hz 至 8 MHz,以评估填料浓度的影响。研究结果表明,加入碳化硅和铁颗粒后,介电常数显著提高,介电损耗也表现出复杂的频率依赖性。扫描电镜分析深入揭示了填料引起的微观结构变化,并与观察到的介电性能相关联。结果表明,由于界面极化和 Maxwell-Wagner-sillars 效应,可通过精确控制 SiC 和 Fe 颗粒的浓度来有效定制虫胶复合材料的介电性能。这项研究强调了虫胶复合材料作为可持续的高性能介电材料在先进电子应用中的潜力,有助于开发生态友好型电子设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
201
审稿时长
2.8 months
期刊介绍: Reaction Kinetics, Mechanisms and Catalysis is a medium for original contributions in the following fields: -kinetics of homogeneous reactions in gas, liquid and solid phase; -Homogeneous catalysis; -Heterogeneous catalysis; -Adsorption in heterogeneous catalysis; -Transport processes related to reaction kinetics and catalysis; -Preparation and study of catalysts; -Reactors and apparatus. Reaction Kinetics, Mechanisms and Catalysis was formerly published under the title Reaction Kinetics and Catalysis Letters.
期刊最新文献
Editorial. Special issue papers presented at the International Conference on Recent Trends in Materials and Devices 2023 Visible light active bismuth chromate/curcuma longa heterostructure for enhancing photocatalytic activity Influence of electron-donating groups on the aniline oxidative coupling reaction with promethazine: a comprehensive experimental and theoretical investigation Xanthan gum templated hydrothermal synthesis of Bi2O3 nano-photocatalyst for the mineralization of chlorophenols prevalent in paper pulp mill Innovative CO2 conversion: harnessing photocatalytic activity in polyvinylidene fluoride/TiO2 electrospun nanofibers for environmental sustainability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1