Multi-scale assessment of high-resolution reanalysis precipitation fields over Italy

Francesco Cavalleri, Cristian Lussana, Francesca Viterbo, Michele Brunetti, Riccardo Bonanno, Veronica Manara, Matteo Lacavalla, Simone Sperati, Mario Raffa, Valerio Capecchi, Davide Cesari, Antonio Giordani, Ines Maria Luisa Cerenzia, Maurizio Maugeri
{"title":"Multi-scale assessment of high-resolution reanalysis precipitation fields over Italy","authors":"Francesco Cavalleri, Cristian Lussana, Francesca Viterbo, Michele Brunetti, Riccardo Bonanno, Veronica Manara, Matteo Lacavalla, Simone Sperati, Mario Raffa, Valerio Capecchi, Davide Cesari, Antonio Giordani, Ines Maria Luisa Cerenzia, Maurizio Maugeri","doi":"arxiv-2407.11517","DOIUrl":null,"url":null,"abstract":"This study focuses on the validation of high-resolution regional reanalyses\nto understand their effectiveness in reproducing precipitation patterns over\nItaly, a climate change hotspot characterized by coastal sea-land interaction\nand complex orography. Nine reanalysis products were evaluated, with the ECMWF\nglobal reanalysis ERA5 serving as a benchmark. These included both European\n(COSMO-REA6, CERRA) and Italy-specific (BOLAM, MERIDA, MERIDA-HRES, MOLOCH,\nSPHERA, VHR-REA\\_IT) datasets, using different models and parametrizations. The\ninter-comparison involved determining the effective resolution of daily\nprecipitation fields using wavelet techniques and assessing intense\nprecipitation statistics through frequency distributions. In-situ observations\nand observational gridded datasets were used to independently validate\nreanalysis precipitation fields. The capability of reanalyses to depict daily\nprecipitation patterns was assessed, highlighting a maximum radius of\nprecipitation misplacement of about 15 km, with notably lower skills during\nsummer. An overall overestimation of precipitation was identified in the\nreanalysis climatological fields over the Po Valley and the Alps, whereas\nmultiple products showed an underestimation of precipitations across the\nNorth-West coast, the Apennines, and Southern Italy. Finally, a comparison with\na time-consistent observational dataset (UniMi/ISAC-CNR) revealed a non-stable\ndeviation from observations in the annual precipitation cumulate of the\nreanalysis products analyzed. This should be taken into account when\ninterpreting precipitation trends over Italy.","PeriodicalId":501166,"journal":{"name":"arXiv - PHYS - Atmospheric and Oceanic Physics","volume":"333 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atmospheric and Oceanic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.11517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study focuses on the validation of high-resolution regional reanalyses to understand their effectiveness in reproducing precipitation patterns over Italy, a climate change hotspot characterized by coastal sea-land interaction and complex orography. Nine reanalysis products were evaluated, with the ECMWF global reanalysis ERA5 serving as a benchmark. These included both European (COSMO-REA6, CERRA) and Italy-specific (BOLAM, MERIDA, MERIDA-HRES, MOLOCH, SPHERA, VHR-REA\_IT) datasets, using different models and parametrizations. The inter-comparison involved determining the effective resolution of daily precipitation fields using wavelet techniques and assessing intense precipitation statistics through frequency distributions. In-situ observations and observational gridded datasets were used to independently validate reanalysis precipitation fields. The capability of reanalyses to depict daily precipitation patterns was assessed, highlighting a maximum radius of precipitation misplacement of about 15 km, with notably lower skills during summer. An overall overestimation of precipitation was identified in the reanalysis climatological fields over the Po Valley and the Alps, whereas multiple products showed an underestimation of precipitations across the North-West coast, the Apennines, and Southern Italy. Finally, a comparison with a time-consistent observational dataset (UniMi/ISAC-CNR) revealed a non-stable deviation from observations in the annual precipitation cumulate of the reanalysis products analyzed. This should be taken into account when interpreting precipitation trends over Italy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
意大利上空高分辨率再分析降水场的多尺度评估
这项研究的重点是验证高分辨率区域再分析,以了解它们在再现意大利降水模式方面的有效性,意大利是一个以沿海海陆相互作用和复杂地形为特征的气候变化热点地区。以 ECMWF 全球再分析 ERA5 为基准,对九种再分析产品进行了评估。这些产品包括欧洲的(COSMO-REA6、CERRA)和意大利的(BOLAM、MERIDA、MERIDA-HRES、MOLOCH、SPHERA、VHR-REA/IT)数据集,使用了不同的模型和参数。相互比较包括利用小波技术确定每日沉降场的有效分辨率,并通过频率分布评估强沉降统计量。现场观测和观测网格数据集被用来独立验证再分析降水场。评估了再分析描绘日常降水模式的能力,结果表明降水错位的最大半径约为 15 公里,而夏季的降水错位能力明显较低。在分析波河流域和阿尔卑斯山的气候场时,发现降水量总体上被高估了,而在西北海岸、亚平宁山脉和意大利南部,多个产品显示降水量被低估了。最后,与具有时间一致性的观测数据集(UniMi/ISAC-CNR)进行比较后发现,所分析产品的年降水量累积与观测数据没有偏差。在解释意大利降水趋势时应考虑到这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Harnessing AI data-driven global weather models for climate attribution: An analysis of the 2017 Oroville Dam extreme atmospheric river Super Resolution On Global Weather Forecasts Can Transfer Learning be Used to Identify Tropical State-Dependent Bias Relevant to Midlatitude Subseasonal Predictability? Using Generative Models to Produce Realistic Populations of the United Kingdom Windstorms Integrated nowcasting of convective precipitation with Transformer-based models using multi-source data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1