{"title":"Enhanced multistage deep learning for diagnosing anterior disc displacement in the temporomandibular joint using MRI.","authors":"Chang-Ki Min, Won Jung, Subin Joo","doi":"10.1093/dmfr/twae033","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study aimed to propose a new method for the automatic diagnosis of anterior disc displacement of the temporomandibular joint (TMJ) using MRI and deep learning. By using a multistage approach, the factors affecting the final result can be easily identified and improved.</p><p><strong>Methods: </strong>This study introduces a multistage automatic diagnostic technique using deep learning. This process involves segmenting the target from MR images, extracting distance parameters, and classifying the diagnosis into 3 classes. MRI exams of 368 TMJs from 204 patients were evaluated for anterior disc displacement. In the first stage, 5 algorithms were used for the semantic segmentation of the disc and condyle. In the second stage, 54 distance parameters were extracted from the segments. In the third stage, a rule-based decision model was developed to link the parameters with the expert diagnosis results.</p><p><strong>Results: </strong>In the first stage, DeepLabV3+ showed the best result (95% Hausdorff distance, Dice coefficient, and sensitivity of 6.47 ± 7.22, 0.84 ± 0.07, and 0.84 ± 0.09, respectively). This study used the original MRI exams as input without preprocessing and showed high segmentation performance compared with that of previous studies. In the third stage, the combination of SegNet and a random forest model yielded an accuracy of 0.89 ± 0.06.</p><p><strong>Conclusions: </strong>An algorithm was developed to automatically diagnose TMJ-anterior disc displacement using MRI. Through a multistage approach, this algorithm facilitated the improvement of results and demonstrated high accuracy from more complex inputs. Furthermore, existing radiological knowledge was applied and validated.</p>","PeriodicalId":11261,"journal":{"name":"Dento maxillo facial radiology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dento maxillo facial radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/dmfr/twae033","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: This study aimed to propose a new method for the automatic diagnosis of anterior disc displacement of the temporomandibular joint (TMJ) using MRI and deep learning. By using a multistage approach, the factors affecting the final result can be easily identified and improved.
Methods: This study introduces a multistage automatic diagnostic technique using deep learning. This process involves segmenting the target from MR images, extracting distance parameters, and classifying the diagnosis into 3 classes. MRI exams of 368 TMJs from 204 patients were evaluated for anterior disc displacement. In the first stage, 5 algorithms were used for the semantic segmentation of the disc and condyle. In the second stage, 54 distance parameters were extracted from the segments. In the third stage, a rule-based decision model was developed to link the parameters with the expert diagnosis results.
Results: In the first stage, DeepLabV3+ showed the best result (95% Hausdorff distance, Dice coefficient, and sensitivity of 6.47 ± 7.22, 0.84 ± 0.07, and 0.84 ± 0.09, respectively). This study used the original MRI exams as input without preprocessing and showed high segmentation performance compared with that of previous studies. In the third stage, the combination of SegNet and a random forest model yielded an accuracy of 0.89 ± 0.06.
Conclusions: An algorithm was developed to automatically diagnose TMJ-anterior disc displacement using MRI. Through a multistage approach, this algorithm facilitated the improvement of results and demonstrated high accuracy from more complex inputs. Furthermore, existing radiological knowledge was applied and validated.
期刊介绍:
Dentomaxillofacial Radiology (DMFR) is the journal of the International Association of Dentomaxillofacial Radiology (IADMFR) and covers the closely related fields of oral radiology and head and neck imaging.
Established in 1972, DMFR is a key resource keeping dentists, radiologists and clinicians and scientists with an interest in Head and Neck imaging abreast of important research and developments in oral and maxillofacial radiology.
The DMFR editorial board features a panel of international experts including Editor-in-Chief Professor Ralf Schulze. Our editorial board provide their expertise and guidance in shaping the content and direction of the journal.
Quick Facts:
- 2015 Impact Factor - 1.919
- Receipt to first decision - average of 3 weeks
- Acceptance to online publication - average of 3 weeks
- Open access option
- ISSN: 0250-832X
- eISSN: 1476-542X