Hana Bandouchova, Kamila Novotna Kruzikova, Jan Zukal, Petr Linhart, Jana Sedlackova, Lucie Veitova, Vendula Kalocsanyiova, Jiri Pikula, Zdenka Svobodova
{"title":"Natural mercury exposure of European insectivorous bats may exceed a recognized toxicity threshold.","authors":"Hana Bandouchova, Kamila Novotna Kruzikova, Jan Zukal, Petr Linhart, Jana Sedlackova, Lucie Veitova, Vendula Kalocsanyiova, Jiri Pikula, Zdenka Svobodova","doi":"10.1007/s10646-024-02785-5","DOIUrl":null,"url":null,"abstract":"<p><p>Heavy metals are an important group of toxic substances harmful for many organisms. Of these, mercury is one of the most monitored in the environment. Several matrices are used for the monitoring of environmental load, including a range of organisms; bats, however, have only been examined rarely. Insectivorous bats are apex predators threatened by several human interventions in their natural environment, including heavy metal pollution. The aim of this study was to analyze the content of total mercury in the fur, flight membrane, and pectoral muscle of greater mouse-eared bats (Myotis myotis). Total mercury concentrations were also measured in carabid beetles from the catch locality Zastávka u Brna. Samples were obtained from 43 bat carcasses at two different localities in the Czech Republic (Zastávka u Brna, Malá Morávka). Total mercury content varied between 1.76-72.20 µg/g in fur, 0.04-0.14 µg/g in skin, and 0.05-0.20 µg/g in muscle. Total mercury values in the fur of some individuals from Malá Morávka exceeded the recognized toxicity limit. Furthermore, there was a significant difference (p < 0.001) in content of total mercury in fur between localities, and there was a clear effect of age on concentrations in fur, skin, and muscle, the concentrations being significantly correlated (fur and skin r<sub>s</sub> = 0.783; fur and muscle r<sub>s</sub> = 0.716; skin and muscle r<sub>s</sub> = 0.884). These findings confirm the usefulness of fur samples from living bats for biomonitoring mercury burden in the environment.</p>","PeriodicalId":11497,"journal":{"name":"Ecotoxicology","volume":" ","pages":"948-958"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11399212/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10646-024-02785-5","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Heavy metals are an important group of toxic substances harmful for many organisms. Of these, mercury is one of the most monitored in the environment. Several matrices are used for the monitoring of environmental load, including a range of organisms; bats, however, have only been examined rarely. Insectivorous bats are apex predators threatened by several human interventions in their natural environment, including heavy metal pollution. The aim of this study was to analyze the content of total mercury in the fur, flight membrane, and pectoral muscle of greater mouse-eared bats (Myotis myotis). Total mercury concentrations were also measured in carabid beetles from the catch locality Zastávka u Brna. Samples were obtained from 43 bat carcasses at two different localities in the Czech Republic (Zastávka u Brna, Malá Morávka). Total mercury content varied between 1.76-72.20 µg/g in fur, 0.04-0.14 µg/g in skin, and 0.05-0.20 µg/g in muscle. Total mercury values in the fur of some individuals from Malá Morávka exceeded the recognized toxicity limit. Furthermore, there was a significant difference (p < 0.001) in content of total mercury in fur between localities, and there was a clear effect of age on concentrations in fur, skin, and muscle, the concentrations being significantly correlated (fur and skin rs = 0.783; fur and muscle rs = 0.716; skin and muscle rs = 0.884). These findings confirm the usefulness of fur samples from living bats for biomonitoring mercury burden in the environment.
期刊介绍:
Ecotoxicology is an international journal devoted to the publication of fundamental research on the effects of toxic chemicals on populations, communities and terrestrial, freshwater and marine ecosystems. It aims to elucidate mechanisms and processes whereby chemicals exert their effects on ecosystems and the impact caused at the population or community level. The journal is not biased with respect to taxon or biome, and papers that indicate possible new approaches to regulation and control of toxic chemicals and those aiding in formulating ways of conserving threatened species are particularly welcome. Studies on individuals should demonstrate linkage to population effects in clear and quantitative ways. Laboratory studies must show a clear linkage to specific field situations. The journal includes not only original research papers but technical notes and review articles, both invited and submitted. A strong, broadly based editorial board ensures as wide an international coverage as possible.