Single crystals of purely organic free-standing two-dimensional woven polymer networks.

IF 19.2 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nature chemistry Pub Date : 2024-07-18 DOI:10.1038/s41557-024-01580-3
Ding Xiao, Zhitong Jin, Guan Sheng, Liya Chen, Xuedong Xiao, Tianyu Shan, Jiao Wang, Rahul Navik, Jianping Xu, Lin Zhou, Qing-Hui Guo, Guangfeng Li, Yihan Zhu, J Fraser Stoddart, Feihe Huang
{"title":"Single crystals of purely organic free-standing two-dimensional woven polymer networks.","authors":"Ding Xiao, Zhitong Jin, Guan Sheng, Liya Chen, Xuedong Xiao, Tianyu Shan, Jiao Wang, Rahul Navik, Jianping Xu, Lin Zhou, Qing-Hui Guo, Guangfeng Li, Yihan Zhu, J Fraser Stoddart, Feihe Huang","doi":"10.1038/s41557-024-01580-3","DOIUrl":null,"url":null,"abstract":"<p><p>The aesthetic and practicality of macroscopic fabrics continue to encourage chemists to weave molecules into interlaced patterns with the aim of providing emergent physical and chemical properties when compared with their starting materials. Weaving purely organic molecular threads into flawless two-dimensional patterns remains a formidable challenge, even though its feasibility has been proposed on several occasions. Herein we describe the synthesis of a flawless, purely organic, free-standing two-dimensional woven polymer network driven by dative B-N bonds. Single crystals of this woven polymer network were obtained and its well-defined woven topology was revealed by X-ray diffraction analysis. Free-standing two-dimensional monolayer nanosheets of the woven polymer network were exfoliated from the layered crystals using Scotch Magic Tape. The surface features of the nanosheets were investigated by integrated low-dose and cryogenic electron microscopy imaging techniques. These findings demonstrate the precise construction of purely organic woven polymer networks and highlight the unique opportunities for the application of woven topologies in two-dimensional organic materials.</p>","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":null,"pages":null},"PeriodicalIF":19.2000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41557-024-01580-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The aesthetic and practicality of macroscopic fabrics continue to encourage chemists to weave molecules into interlaced patterns with the aim of providing emergent physical and chemical properties when compared with their starting materials. Weaving purely organic molecular threads into flawless two-dimensional patterns remains a formidable challenge, even though its feasibility has been proposed on several occasions. Herein we describe the synthesis of a flawless, purely organic, free-standing two-dimensional woven polymer network driven by dative B-N bonds. Single crystals of this woven polymer network were obtained and its well-defined woven topology was revealed by X-ray diffraction analysis. Free-standing two-dimensional monolayer nanosheets of the woven polymer network were exfoliated from the layered crystals using Scotch Magic Tape. The surface features of the nanosheets were investigated by integrated low-dose and cryogenic electron microscopy imaging techniques. These findings demonstrate the precise construction of purely organic woven polymer networks and highlight the unique opportunities for the application of woven topologies in two-dimensional organic materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纯有机独立二维编织聚合物网络单晶体。
宏观织物的美观性和实用性不断鼓励化学家将分子编织成交错的图案,目的是提供与其初始材料相比新出现的物理和化学特性。将纯有机分子线编织成完美无瑕的二维图案仍然是一项艰巨的挑战,尽管其可行性已被多次提出。在此,我们介绍了一种由双向 B-N 键驱动的无缺陷、纯有机、独立的二维编织聚合物网络的合成。我们获得了这种编织聚合物网络的单晶体,并通过 X 射线衍射分析揭示了其清晰的编织拓扑结构。使用 Scotch Magic Tape 从层状晶体中剥离出编织聚合物网络的独立二维单层纳米片。通过综合低剂量和低温电子显微镜成像技术研究了纳米片的表面特征。这些研究结果表明了纯有机编织聚合物网络的精确构造,并强调了在二维有机材料中应用编织拓扑结构的独特机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature chemistry
Nature chemistry 化学-化学综合
CiteScore
29.60
自引率
1.40%
发文量
226
审稿时长
1.7 months
期刊介绍: Nature Chemistry is a monthly journal that publishes groundbreaking and significant research in all areas of chemistry. It covers traditional subjects such as analytical, inorganic, organic, and physical chemistry, as well as a wide range of other topics including catalysis, computational and theoretical chemistry, and environmental chemistry. The journal also features interdisciplinary research at the interface of chemistry with biology, materials science, nanotechnology, and physics. Manuscripts detailing such multidisciplinary work are encouraged, as long as the central theme pertains to chemistry. Aside from primary research, Nature Chemistry publishes review articles, news and views, research highlights from other journals, commentaries, book reviews, correspondence, and analysis of the broader chemical landscape. It also addresses crucial issues related to education, funding, policy, intellectual property, and the societal impact of chemistry. Nature Chemistry is dedicated to ensuring the highest standards of original research through a fair and rigorous review process. It offers authors maximum visibility for their papers, access to a broad readership, exceptional copy editing and production standards, rapid publication, and independence from academic societies and other vested interests. Overall, Nature Chemistry aims to be the authoritative voice of the global chemical community.
期刊最新文献
Fused radical SAM and αKG-HExxH domain proteins contain a distinct structural fold and catalyse cyclophane formation and β-hydroxylation A single diiron enzyme catalyses the oxidative rearrangement of tryptophan to indole nitrile Small-molecule properties define partitioning into biomolecular condensates Stereoselective and site-divergent synthesis of C-glycosides Isolation of a NHC-stabilized heavier nitrile and its conversion into an isonitrile analogue
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1