Directed Graphical Models and Causal Discovery for Zero-Inflated Data.

Shiqing Yu, Mathias Drton, Ali Shojaie
{"title":"Directed Graphical Models and Causal Discovery for Zero-Inflated Data.","authors":"Shiqing Yu, Mathias Drton, Ali Shojaie","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>With advances in technology, gene expression measurements from single cells can be used to gain refined insights into regulatory relationships among genes. Directed graphical models are well-suited to explore such (cause-effect) relationships. However, statistical analyses of single cell data are complicated by the fact that the data often show zero-inflated expression patterns. To address this challenge, we propose directed graphical models that are based on Hurdle conditional distributions parametrized in terms of polynomials in parent variables and their 0/1 indicators of being zero or nonzero. While directed graphs for Gaussian models are only identifiable up to an equivalence class in general, we show that, under a natural and weak assumption, the exact directed acyclic graph of our zero-inflated models can be identified. We propose methods for graph recovery, apply our model to real single-cell gene expression data on T helper cells, and show simulated experiments that validate the identifiability and graph estimation methods in practice.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"213 ","pages":"27-67"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11257027/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of machine learning research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With advances in technology, gene expression measurements from single cells can be used to gain refined insights into regulatory relationships among genes. Directed graphical models are well-suited to explore such (cause-effect) relationships. However, statistical analyses of single cell data are complicated by the fact that the data often show zero-inflated expression patterns. To address this challenge, we propose directed graphical models that are based on Hurdle conditional distributions parametrized in terms of polynomials in parent variables and their 0/1 indicators of being zero or nonzero. While directed graphs for Gaussian models are only identifiable up to an equivalence class in general, we show that, under a natural and weak assumption, the exact directed acyclic graph of our zero-inflated models can be identified. We propose methods for graph recovery, apply our model to real single-cell gene expression data on T helper cells, and show simulated experiments that validate the identifiability and graph estimation methods in practice.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
零膨胀数据的有向图模型和因果发现。
随着技术的进步,单细胞基因表达测量可用于深入了解基因之间的调控关系。定向图模型非常适合用来探索这种(因果)关系。然而,由于单细胞数据通常显示零膨胀表达模式,因此单细胞数据的统计分析非常复杂。为了应对这一挑战,我们提出了基于赫尔德条件分布的有向图模型,其参数为父变量的多项式及其为零或非零的 0/1 指标。虽然高斯模型的有向图一般只能识别到等价类,但我们证明,在一个自然的弱假设下,我们的零膨胀模型的精确有向无环图是可以识别的。我们提出了恢复图的方法,将我们的模型应用于 T 辅助细胞的真实单细胞基因表达数据,并展示了在实践中验证可识别性和图估计方法的模拟实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contrastive Learning for Clinical Outcome Prediction with Partial Data Sources. Multi-Source Conformal Inference Under Distribution Shift. DISCRET: Synthesizing Faithful Explanations For Treatment Effect Estimation. Kernel Debiased Plug-in Estimation: Simultaneous, Automated Debiasing without Influence Functions for Many Target Parameters. Adapt and Diffuse: Sample-Adaptive Reconstruction Via Latent Diffusion Models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1