61Cu-PSMA-Targeted PET for Prostate Cancer: From Radiotracer Development to First-in-Human Imaging.

Tais Basaco Bernabeu, Rosalba Mansi, Luigi Del Pozzo, Sandra Zanger, Raghuvir H Gaonkar, Lisa McDougall, Francesco De Rose, Leila Jaafar-Thiel, Michael Herz, Matthias Eiber, Gary A Ulaner, Wolfgang A Weber, Melpomeni Fani
{"title":"<sup>61</sup>Cu-PSMA-Targeted PET for Prostate Cancer: From Radiotracer Development to First-in-Human Imaging.","authors":"Tais Basaco Bernabeu, Rosalba Mansi, Luigi Del Pozzo, Sandra Zanger, Raghuvir H Gaonkar, Lisa McDougall, Francesco De Rose, Leila Jaafar-Thiel, Michael Herz, Matthias Eiber, Gary A Ulaner, Wolfgang A Weber, Melpomeni Fani","doi":"10.2967/jnumed.123.267126","DOIUrl":null,"url":null,"abstract":"<p><p>The demand for PET tracers that target prostate-specific membrane antigen (PSMA) continues to increase. Meeting this demand with approved <sup>68</sup>Ga- and <sup>18</sup>F-labeled PSMA tracers is challenging outside of major urban centers. This is because the short physical half-life of these radionuclides makes it necessary to produce them near their sites of usage. To overcome this challenge, we propose cyclotron-produced <sup>61</sup>Cu for labeling PSMA PET tracers. <sup>61</sup>Cu can be produced on a large scale, and its 3.33-h half-life allows shipping over considerably longer distances than possible for <sup>68</sup>Ga and <sup>18</sup>F. Production of true theranostic twins using <sup>61</sup>Cu and the β<sup>-</sup>-emitter <sup>67</sup>Cu is also feasible. <b>Methods:</b> PSMA-I&T (DOTAGA-(l-y)fk(sub-KuE)) and its derivative in which the DOTAGA chelator was replaced by NODAGA (NODAGA-(l-y)fk(sub-KuE)), herein reported as DOTAGA-PSMA-I&T and NODAGA-PSMA-I&T, respectively, were labeled with <sup>61</sup>Cu and compared with [<sup>68</sup>Ga]Ga-DOTAGA-PSMA-I&T, [<sup>68</sup>Ga]Ga-NODAGA-PSMA-I&T, [<sup>68</sup>Ga]Ga-PSMA-11, and [<sup>18</sup>F]PSMA-1007. In vitro (lipophilicity, affinity, cellular uptake, and distribution) and in vivo (PET/CT, biodistribution, and stability) studies were performed in LNCaP cells and xenografts. Human dosimetry estimates were calculated for [<sup>61</sup>Cu]Cu-NODAGA-PSMA-I&T. First-in-human imaging with [<sup>61</sup>Cu]Cu-NODAGA-PSMA-I&T was performed in a patient with metastatic prostate cancer. <b>Results:</b> [<sup>61</sup>Cu]Cu-DOTAGA-PSMA-I&T and [<sup>61</sup>Cu]Cu-NODAGA-PSMA-I&T were synthesized with radiochemical purity of more than 97%, at an apparent molar activity of 24 MBq/nmol, without purification after labeling. In vitro, natural Cu (<sup>nat</sup>Cu)-DOTAGA-PSMA-I&T and <sup>nat</sup>Cu-NODAGA-PSMA-I&T showed high affinity for PSMA (inhibitory concentration of 50%, 11.2 ± 2.3 and 9.3 ± 1.8 nM, respectively), although lower than the reference <sup>nat</sup>Ga-PSMA-11 (inhibitory concentration of 50%, 2.4 ± 0.4 nM). Their cellular uptake and distribution were comparable to those of [<sup>68</sup>Ga]Ga-PSMA-11. In vivo, [<sup>61</sup>Cu]Cu-NODAGA-PSMA-I&T showed significantly lower uptake in nontargeted tissues than [<sup>61</sup>Cu]Cu-DOTAGA-PSMA-I&T and higher tumor uptake (14.0 ± 5.0 percentage injected activity per gram of tissue [%IA/g]) than [<sup>61</sup>Cu]Cu-DOTAGA-PSMA-I&T (6.06 ± 0.25 %IA/g, <i>P</i> = 0.0059), [<sup>68</sup>Ga]Ga-PSMA-11 (10.2 ± 1.5 %IA/g, <i>P</i> = 0.0972), and [<sup>18</sup>F]PSMA-1007 (9.70 ± 2.57 %IA/g, <i>P</i> = 0.080) at 1 h after injection. Tumor uptake was also higher for [<sup>61</sup>Cu]Cu-NODAGA-PSMA-I&T at 4 h after injection (10.7 ± 3.3 %IA/g) than for [<sup>61</sup>Cu]Cu-DOTAGA-PSMA-I&T (4.88 ± 0.63 %IA/g, <i>P</i> = 0.0014) and [<sup>18</sup>F]PSMA-1007 (6.28 ± 2.19 %IA/g, <i>P</i> = 0.0145). Tumor-to-nontumor ratios of [<sup>61</sup>Cu]Cu-NODAGA-PSMA-I&T were superior to those of [<sup>61</sup>Cu]Cu-DOTAGA-PSMA-I&T and comparable to those of [<sup>68</sup>Ga]Ga-PSMA-11 and [<sup>18</sup>F]PSMA-1007 at 1 h after injection and increased significantly between 1 and 4 h after injection in most cases. Human dosimetry estimates for [<sup>61</sup>Cu]Cu-NODAGA-PSMA-I&T were similar to the ones reported for <sup>18</sup>F-PSMA ligands. First-in-human imaging demonstrated multifocal osseous and hepatic metastases. <b>Conclusion:</b> [<sup>61</sup>Cu]Cu-NODAGA-PSMA-I&T is a promising PSMA radiotracer that compares favorably with [<sup>68</sup>Ga]Ga-PSMA-11 and [<sup>18</sup>F]PSMA-1007, while allowing delayed imaging.</p>","PeriodicalId":94099,"journal":{"name":"Journal of nuclear medicine : official publication, Society of Nuclear Medicine","volume":" ","pages":"1427-1434"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11372264/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nuclear medicine : official publication, Society of Nuclear Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2967/jnumed.123.267126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The demand for PET tracers that target prostate-specific membrane antigen (PSMA) continues to increase. Meeting this demand with approved 68Ga- and 18F-labeled PSMA tracers is challenging outside of major urban centers. This is because the short physical half-life of these radionuclides makes it necessary to produce them near their sites of usage. To overcome this challenge, we propose cyclotron-produced 61Cu for labeling PSMA PET tracers. 61Cu can be produced on a large scale, and its 3.33-h half-life allows shipping over considerably longer distances than possible for 68Ga and 18F. Production of true theranostic twins using 61Cu and the β--emitter 67Cu is also feasible. Methods: PSMA-I&T (DOTAGA-(l-y)fk(sub-KuE)) and its derivative in which the DOTAGA chelator was replaced by NODAGA (NODAGA-(l-y)fk(sub-KuE)), herein reported as DOTAGA-PSMA-I&T and NODAGA-PSMA-I&T, respectively, were labeled with 61Cu and compared with [68Ga]Ga-DOTAGA-PSMA-I&T, [68Ga]Ga-NODAGA-PSMA-I&T, [68Ga]Ga-PSMA-11, and [18F]PSMA-1007. In vitro (lipophilicity, affinity, cellular uptake, and distribution) and in vivo (PET/CT, biodistribution, and stability) studies were performed in LNCaP cells and xenografts. Human dosimetry estimates were calculated for [61Cu]Cu-NODAGA-PSMA-I&T. First-in-human imaging with [61Cu]Cu-NODAGA-PSMA-I&T was performed in a patient with metastatic prostate cancer. Results: [61Cu]Cu-DOTAGA-PSMA-I&T and [61Cu]Cu-NODAGA-PSMA-I&T were synthesized with radiochemical purity of more than 97%, at an apparent molar activity of 24 MBq/nmol, without purification after labeling. In vitro, natural Cu (natCu)-DOTAGA-PSMA-I&T and natCu-NODAGA-PSMA-I&T showed high affinity for PSMA (inhibitory concentration of 50%, 11.2 ± 2.3 and 9.3 ± 1.8 nM, respectively), although lower than the reference natGa-PSMA-11 (inhibitory concentration of 50%, 2.4 ± 0.4 nM). Their cellular uptake and distribution were comparable to those of [68Ga]Ga-PSMA-11. In vivo, [61Cu]Cu-NODAGA-PSMA-I&T showed significantly lower uptake in nontargeted tissues than [61Cu]Cu-DOTAGA-PSMA-I&T and higher tumor uptake (14.0 ± 5.0 percentage injected activity per gram of tissue [%IA/g]) than [61Cu]Cu-DOTAGA-PSMA-I&T (6.06 ± 0.25 %IA/g, P = 0.0059), [68Ga]Ga-PSMA-11 (10.2 ± 1.5 %IA/g, P = 0.0972), and [18F]PSMA-1007 (9.70 ± 2.57 %IA/g, P = 0.080) at 1 h after injection. Tumor uptake was also higher for [61Cu]Cu-NODAGA-PSMA-I&T at 4 h after injection (10.7 ± 3.3 %IA/g) than for [61Cu]Cu-DOTAGA-PSMA-I&T (4.88 ± 0.63 %IA/g, P = 0.0014) and [18F]PSMA-1007 (6.28 ± 2.19 %IA/g, P = 0.0145). Tumor-to-nontumor ratios of [61Cu]Cu-NODAGA-PSMA-I&T were superior to those of [61Cu]Cu-DOTAGA-PSMA-I&T and comparable to those of [68Ga]Ga-PSMA-11 and [18F]PSMA-1007 at 1 h after injection and increased significantly between 1 and 4 h after injection in most cases. Human dosimetry estimates for [61Cu]Cu-NODAGA-PSMA-I&T were similar to the ones reported for 18F-PSMA ligands. First-in-human imaging demonstrated multifocal osseous and hepatic metastases. Conclusion: [61Cu]Cu-NODAGA-PSMA-I&T is a promising PSMA radiotracer that compares favorably with [68Ga]Ga-PSMA-11 and [18F]PSMA-1007, while allowing delayed imaging.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于前列腺癌的 61Cu-PSMA 靶向 PET:从放射性示踪剂开发到首次人体成像。
针对前列腺特异性膜抗原(PSMA)的 PET 示踪剂的需求持续增长。使用已获批准的 68Ga 和 18F 标记 PSMA 示踪剂来满足这一需求,在主要城市中心以外的地区具有挑战性。这是因为这些放射性核素的物理半衰期较短,必须在使用地点附近生产。为了克服这一挑战,我们建议用回旋加速器生产的 61Cu 来标记 PSMA PET 示踪剂。61Cu 可以大规模生产,它的半衰期为 3.33 小时,运输距离比 68Ga 和 18F 远得多。使用 61Cu 和 β-发射体 67Cu 生产真正的治疗双胞胎也是可行的。方法:PSMA-I&T(DOTAGA-(l-y)fk(sub-KuE))及其衍生物,其中的 DOTAGA 螯合剂被 NODAGA(NODAGA-(l-y)fk(sub-KuE))取代,现分别报告为 DOTAGA-PSMA-I&T 和 NODAGA-PSMA-I&T、分别用 61Cu 标记,并与 [68Ga]Ga-DOTAGA-PSMA-I&T、[68Ga]Ga-NODAGA-PSMA-I&T、[68Ga]Ga-PSMA-11 和 [18F]PSMA-1007 进行比较。在 LNCaP 细胞和异种移植物中进行了体外(亲脂性、亲和力、细胞摄取和分布)和体内(PET/CT、生物分布和稳定性)研究。计算了[61Cu]Cu-NODAGA-PSMA-I&T 的人体剂量估算值。在一名转移性前列腺癌患者身上首次进行了[61Cu]Cu-NODAGA-PSMA-I&T人体成像。结果:[61Cu]Cu-DOTAGA-PSMA-I&T和[61Cu]Cu-NODAGA-PSMA-I&T的合成放射化学纯度超过97%,表观摩尔活性为24 MBq/nmol,标记后无需纯化。在体外,天然铜(natCu)-DOTAGA-PSMA-I&T 和 natCu-NODAGA-PSMA-I&T 对 PSMA 表现出很高的亲和力(50% 的抑制浓度分别为 11.2 ± 2.3 和 9.3 ± 1.8 nM),但低于参考物 natGa-PSMA-11(50% 的抑制浓度为 2.4 ± 0.4 nM)。它们的细胞摄取和分布与[68Ga]Ga-PSMA-11相当。在体内,[61Cu]Cu-NODAGA-PSMA-I&T 在非靶组织中的摄取量明显低于[61Cu]Cu-DOTAGA-PSMA-I&T,而在肿瘤中的摄取量(14.0 ± 5.0 每克组织注射活性百分比[%IA/g])高于[61Cu]Cu-DOTAGA-PSMA-I&T(6.06 ± 0.25 %IA/g,P = 0.0059)、[68Ga]Ga-PSMA-11(10.2 ± 1.5 %IA/g,P = 0.0972)和[18F]PSMA-1007(9.70 ± 2.57 %IA/g,P = 0.080)相比。注射 4 小时后,[61Cu]Cu-NODAGA-PSMA-I&T 的肿瘤摄取率(10.7 ± 3.3 %IA/g)也高于[61Cu]Cu-DOTAGA-PSMA-I&T(4.88 ± 0.63 %IA/g,P = 0.0014)和[18F]PSMA-1007(6.28 ± 2.19 %IA/g,P = 0.0145)。注射后1小时,[61Cu]Cu-NODAGA-PSMA-I&T的肿瘤与非肿瘤比率优于[61Cu]Cu-DOTAGA-PSMA-I&T,与[68Ga]Ga-PSMA-11和[18F]PSMA-1007相当,在大多数情况下,注射后1至4小时肿瘤与非肿瘤比率显著增加。61Cu]Cu-NODAGA-PSMA-I&T的人体剂量估算值与18F-PSMA配体的估算值相似。首次人体成像显示了多灶性骨和肝转移。结论[61Cu]Cu-NODAGA-PSMA-I&T是一种很有前途的PSMA放射性示踪剂,与[68Ga]Ga-PSMA-11和[18F]PSMA-1007相比效果更佳,同时允许延迟成像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Diagnostic Radiopharmaceuticals: A Sustainable Path to the Improvement of Patient Care. Is the Clinical Implementation of In-House Artificial Intelligence-Developed Algorithms Happening? Gastrin-Releasing Peptide Receptor Imaging and Therapy in the Era of Personalized Medicine. Maintaining the Evidence for In Vivo Brain Estrogen Receptor Density by Neuroendocrine Aging and Relationships with Cognition and Symptomatology. From Scientist to Analyst to Strategist: Aharon (Ronny) Gal Talks with Ken Herrmann and Johannes Czernin About Leadership in Multinational Pharma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1