A Systematic Literature Review of Model-Driven Engineering Using Machine Learning

IF 6.5 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING IEEE Transactions on Software Engineering Pub Date : 2024-07-18 DOI:10.1109/TSE.2024.3430514
Ana C. Marcén;Antonio Iglesias;Raúl Lapeña;Francisca Pérez;Carlos Cetina
{"title":"A Systematic Literature Review of Model-Driven Engineering Using Machine Learning","authors":"Ana C. Marcén;Antonio Iglesias;Raúl Lapeña;Francisca Pérez;Carlos Cetina","doi":"10.1109/TSE.2024.3430514","DOIUrl":null,"url":null,"abstract":"Model-driven engineering (MDE) is a software engineering paradigm based on the systematic use of models. Over the past few years, engineers have significantly increased the use of MDE, which has been reported as a successful paradigm for developing industrial software. Recently, there have also been remarkable advancements in the Artificial Intelligence (AI) domain, with a significant increase in advanced Machine Learning (ML) techniques. The advances in both fields have led to a surge in works that dwell within the intersection of ML and MDE. This work places the focus on systematically reviewing works that leverage ML to solve MDE problems. We have reviewed a total of 9,194 papers, selecting 98 studies for further analysis. The results of our Systematic Literature Review (SLR) bring light to the current state of the art and trends in the field, discussing the drift in the usage of the different available ML techniques along with the remaining research gaps and open challenges. Our SLR has the potential to produce a positive impact in the research community by steering it towards ML techniques that have been successfully applied to solve MDE challenges.","PeriodicalId":13324,"journal":{"name":"IEEE Transactions on Software Engineering","volume":"50 9","pages":"2269-2293"},"PeriodicalIF":6.5000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Software Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10602548/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Model-driven engineering (MDE) is a software engineering paradigm based on the systematic use of models. Over the past few years, engineers have significantly increased the use of MDE, which has been reported as a successful paradigm for developing industrial software. Recently, there have also been remarkable advancements in the Artificial Intelligence (AI) domain, with a significant increase in advanced Machine Learning (ML) techniques. The advances in both fields have led to a surge in works that dwell within the intersection of ML and MDE. This work places the focus on systematically reviewing works that leverage ML to solve MDE problems. We have reviewed a total of 9,194 papers, selecting 98 studies for further analysis. The results of our Systematic Literature Review (SLR) bring light to the current state of the art and trends in the field, discussing the drift in the usage of the different available ML techniques along with the remaining research gaps and open challenges. Our SLR has the potential to produce a positive impact in the research community by steering it towards ML techniques that have been successfully applied to solve MDE challenges.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用机器学习的模型驱动工程系统文献综述
模型驱动工程(MDE)是一种基于系统使用模型的软件工程范式。在过去几年中,工程师们大幅增加了对 MDE 的使用,据报道,MDE 已成为开发工业软件的成功范例。最近,人工智能(AI)领域也取得了显著进步,先进的机器学习(ML)技术大幅增加。这两个领域的进步导致了 ML 和 MDE 交叉领域作品的激增。这项工作的重点是系统回顾利用 ML 解决 MDE 问题的作品。我们总共查阅了 9,194 篇论文,从中挑选出 98 项研究进行进一步分析。我们的系统性文献综述(SLR)结果揭示了该领域的技术现状和发展趋势,讨论了不同可用 ML 技术的使用偏移以及剩余的研究空白和公开挑战。我们的系统文献综述有可能对研究界产生积极影响,引导他们转向已成功应用于解决 MDE 挑战的 ML 技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Software Engineering
IEEE Transactions on Software Engineering 工程技术-工程:电子与电气
CiteScore
9.70
自引率
10.80%
发文量
724
审稿时长
6 months
期刊介绍: IEEE Transactions on Software Engineering seeks contributions comprising well-defined theoretical results and empirical studies with potential impacts on software construction, analysis, or management. The scope of this Transactions extends from fundamental mechanisms to the development of principles and their application in specific environments. Specific topic areas include: a) Development and maintenance methods and models: Techniques and principles for specifying, designing, and implementing software systems, encompassing notations and process models. b) Assessment methods: Software tests, validation, reliability models, test and diagnosis procedures, software redundancy, design for error control, and measurements and evaluation of process and product aspects. c) Software project management: Productivity factors, cost models, schedule and organizational issues, and standards. d) Tools and environments: Specific tools, integrated tool environments, associated architectures, databases, and parallel and distributed processing issues. e) System issues: Hardware-software trade-offs. f) State-of-the-art surveys: Syntheses and comprehensive reviews of the historical development within specific areas of interest.
期刊最新文献
Line-Level Defect Prediction by Capturing Code Contexts with Graph Convolutional Networks Does Treatment Adherence Impact Experiment Results in TDD? Scoping Software Engineering for AI: The TSE Perspective A context-aware clustering approach for assisting operators in classifying security alerts StagedVulBERT: Multi-Granular Vulnerability Detection with a Novel Pre-trained Code Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1