Sara Migliorini, Anna Dalla Vecchia, Alberto Belussi, Elisa Quintarelli
{"title":"ARTEMIS: a Context-Aware Recommendation System with Crowding Forecaster for the Touristic Domain","authors":"Sara Migliorini, Anna Dalla Vecchia, Alberto Belussi, Elisa Quintarelli","doi":"10.1007/s10796-024-10512-y","DOIUrl":null,"url":null,"abstract":"<p>Recommendation systems are becoming an invaluable assistant not only for users, who may be disoriented in the presence of a huge number of different alternatives, but also for service providers or sellers, who would like to be able to guide the choice of customers toward particular items with specific characteristics. This influence capability can be particularly useful in the tourism domain, where the need to manage the industry in a more sustainable way and the ability to predict and control the level of crowding of PoIs (Points of Interest) have become more pressing in recent years. In this paper, we study the role of contextual information in determining both PoI occupations and user preferences, and we explore how machine learning and deep learning techniques can help produce good recommendations for users by enriching historical information with its contextual counterpart. As a result, we propose the architecture of ARTEMIS, a context-Aware Recommender sysTEM wIth crowding forecaSting, able to learn and forecast user preferences and occupation levels based on historical contextual features. Throughout the paper, we refer to a real-world application scenario regarding the tourist visits performed in Verona, a municipality in Northern Italy, between 2014 and 2019.</p>","PeriodicalId":13610,"journal":{"name":"Information Systems Frontiers","volume":"66 1","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems Frontiers","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10796-024-10512-y","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Recommendation systems are becoming an invaluable assistant not only for users, who may be disoriented in the presence of a huge number of different alternatives, but also for service providers or sellers, who would like to be able to guide the choice of customers toward particular items with specific characteristics. This influence capability can be particularly useful in the tourism domain, where the need to manage the industry in a more sustainable way and the ability to predict and control the level of crowding of PoIs (Points of Interest) have become more pressing in recent years. In this paper, we study the role of contextual information in determining both PoI occupations and user preferences, and we explore how machine learning and deep learning techniques can help produce good recommendations for users by enriching historical information with its contextual counterpart. As a result, we propose the architecture of ARTEMIS, a context-Aware Recommender sysTEM wIth crowding forecaSting, able to learn and forecast user preferences and occupation levels based on historical contextual features. Throughout the paper, we refer to a real-world application scenario regarding the tourist visits performed in Verona, a municipality in Northern Italy, between 2014 and 2019.
期刊介绍:
The interdisciplinary interfaces of Information Systems (IS) are fast emerging as defining areas of research and development in IS. These developments are largely due to the transformation of Information Technology (IT) towards networked worlds and its effects on global communications and economies. While these developments are shaping the way information is used in all forms of human enterprise, they are also setting the tone and pace of information systems of the future. The major advances in IT such as client/server systems, the Internet and the desktop/multimedia computing revolution, for example, have led to numerous important vistas of research and development with considerable practical impact and academic significance. While the industry seeks to develop high performance IS/IT solutions to a variety of contemporary information support needs, academia looks to extend the reach of IS technology into new application domains. Information Systems Frontiers (ISF) aims to provide a common forum of dissemination of frontline industrial developments of substantial academic value and pioneering academic research of significant practical impact.