{"title":"Nonlinear age-related differences in probabilistic learning in mice: A 5-armed bandit task study","authors":"Hiroyuki Ohta , Takashi Nozawa , Takashi Nakano , Yuji Morimoto , Toshiaki Ishizuka","doi":"10.1016/j.neurobiolaging.2024.06.004","DOIUrl":null,"url":null,"abstract":"<div><p>This study explores the impact of aging on reinforcement learning in mice, focusing on changes in learning rates and behavioral strategies. A 5-armed bandit task (5-ABT) and a computational Q-learning model were used to evaluate the positive and negative learning rates and the inverse temperature across three age groups (3, 12, and 18 months). Results showed a significant decline in the negative learning rate of 18-month-old mice, which was not observed for the positive learning rate. This suggests that older mice maintain the ability to learn from successful experiences while decreasing the ability to learn from negative outcomes. We also observed a significant age-dependent variation in inverse temperature, reflecting a shift in action selection policy. Middle-aged mice (12 months) exhibited higher inverse temperature, indicating a higher reliance on previous rewarding experiences and reduced exploratory behaviors, when compared to both younger and older mice. This study provides new insights into aging research by demonstrating that there are age-related differences in specific components of reinforcement learning, which exhibit a non-linear pattern.</p></div>","PeriodicalId":19110,"journal":{"name":"Neurobiology of Aging","volume":"142 ","pages":"Pages 8-16"},"PeriodicalIF":3.7000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Aging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0197458024001222","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the impact of aging on reinforcement learning in mice, focusing on changes in learning rates and behavioral strategies. A 5-armed bandit task (5-ABT) and a computational Q-learning model were used to evaluate the positive and negative learning rates and the inverse temperature across three age groups (3, 12, and 18 months). Results showed a significant decline in the negative learning rate of 18-month-old mice, which was not observed for the positive learning rate. This suggests that older mice maintain the ability to learn from successful experiences while decreasing the ability to learn from negative outcomes. We also observed a significant age-dependent variation in inverse temperature, reflecting a shift in action selection policy. Middle-aged mice (12 months) exhibited higher inverse temperature, indicating a higher reliance on previous rewarding experiences and reduced exploratory behaviors, when compared to both younger and older mice. This study provides new insights into aging research by demonstrating that there are age-related differences in specific components of reinforcement learning, which exhibit a non-linear pattern.
期刊介绍:
Neurobiology of Aging publishes the results of studies in behavior, biochemistry, cell biology, endocrinology, molecular biology, morphology, neurology, neuropathology, pharmacology, physiology and protein chemistry in which the primary emphasis involves mechanisms of nervous system changes with age or diseases associated with age. Reviews and primary research articles are included, occasionally accompanied by open peer commentary. Letters to the Editor and brief communications are also acceptable. Brief reports of highly time-sensitive material are usually treated as rapid communications in which case editorial review is completed within six weeks and publication scheduled for the next available issue.