Gene expression signature for predicting homologous recombination deficiency in triple-negative breast cancer.

IF 6.5 2区 医学 Q1 ONCOLOGY NPJ Breast Cancer Pub Date : 2024-07-19 DOI:10.1038/s41523-024-00671-1
Jia-Wern Pan, Zi-Ching Tan, Pei-Sze Ng, Muhammad Mamduh Ahmad Zabidi, Putri Nur Fatin, Jie-Ying Teo, Siti Norhidayu Hasan, Tania Islam, Li-Ying Teoh, Suniza Jamaris, Mee-Hoong See, Cheng-Har Yip, Pathmanathan Rajadurai, Lai-Meng Looi, Nur Aishah Mohd Taib, Oscar M Rueda, Carlos Caldas, Suet-Feung Chin, Joanna Lim, Soo-Hwang Teo
{"title":"Gene expression signature for predicting homologous recombination deficiency in triple-negative breast cancer.","authors":"Jia-Wern Pan, Zi-Ching Tan, Pei-Sze Ng, Muhammad Mamduh Ahmad Zabidi, Putri Nur Fatin, Jie-Ying Teo, Siti Norhidayu Hasan, Tania Islam, Li-Ying Teoh, Suniza Jamaris, Mee-Hoong See, Cheng-Har Yip, Pathmanathan Rajadurai, Lai-Meng Looi, Nur Aishah Mohd Taib, Oscar M Rueda, Carlos Caldas, Suet-Feung Chin, Joanna Lim, Soo-Hwang Teo","doi":"10.1038/s41523-024-00671-1","DOIUrl":null,"url":null,"abstract":"<p><p>Triple-negative breast cancers (TNBCs) are a subset of breast cancers that have remained difficult to treat. A proportion of TNBCs arising in non-carriers of BRCA pathogenic variants have genomic features that are similar to BRCA carriers and may also benefit from PARP inhibitor treatment. Using genomic data from 129 TNBC samples from the Malaysian Breast Cancer (MyBrCa) cohort, we developed a gene expression-based machine learning classifier for homologous recombination deficiency (HRD) in TNBCs. The classifier identified samples with HRD mutational signature at an AUROC of 0.93 in MyBrCa validation datasets and 0.84 in TCGA TNBCs. Additionally, the classifier strongly segregated HRD-associated genomic features in TNBCs from TCGA, METABRIC, and ICGC. Thus, our gene expression classifier may identify triple-negative breast cancer patients with homologous recombination deficiency, suggesting an alternative method to identify individuals who may benefit from treatment with PARP inhibitors or platinum chemotherapy.</p>","PeriodicalId":19247,"journal":{"name":"NPJ Breast Cancer","volume":"10 1","pages":"60"},"PeriodicalIF":6.5000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271517/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Breast Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41523-024-00671-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Triple-negative breast cancers (TNBCs) are a subset of breast cancers that have remained difficult to treat. A proportion of TNBCs arising in non-carriers of BRCA pathogenic variants have genomic features that are similar to BRCA carriers and may also benefit from PARP inhibitor treatment. Using genomic data from 129 TNBC samples from the Malaysian Breast Cancer (MyBrCa) cohort, we developed a gene expression-based machine learning classifier for homologous recombination deficiency (HRD) in TNBCs. The classifier identified samples with HRD mutational signature at an AUROC of 0.93 in MyBrCa validation datasets and 0.84 in TCGA TNBCs. Additionally, the classifier strongly segregated HRD-associated genomic features in TNBCs from TCGA, METABRIC, and ICGC. Thus, our gene expression classifier may identify triple-negative breast cancer patients with homologous recombination deficiency, suggesting an alternative method to identify individuals who may benefit from treatment with PARP inhibitors or platinum chemotherapy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测三阴性乳腺癌同源重组缺陷的基因表达特征。
三阴性乳腺癌(TNBC)是乳腺癌的一个亚群,一直难以治疗。一部分非 BRCA 致病变异携带者所患的 TNBC 具有与 BRCA 携带者相似的基因组特征,也可能受益于 PARP 抑制剂的治疗。利用来自马来西亚乳腺癌(MyBrCa)队列的129个TNBC样本的基因组数据,我们开发了一种基于基因表达的机器学习分类器,用于检测TNBC中的同源重组缺陷(HRD)。该分类器在MyBrCa验证数据集中识别出具有HRD突变特征的样本,AUROC为0.93,在TCGA TNBCs中识别出HRD突变特征的样本,AUROC为0.84。此外,分类器还能从 TCGA、METABRIC 和 ICGC 的 TNBC 中分离出与 HRD 相关的基因组特征。因此,我们的基因表达分类器可以识别存在同源重组缺陷的三阴性乳腺癌患者,为识别可能受益于PARP抑制剂或铂类化疗的个体提供了另一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
NPJ Breast Cancer
NPJ Breast Cancer Medicine-Pharmacology (medical)
CiteScore
10.10
自引率
1.70%
发文量
122
审稿时长
9 weeks
期刊介绍: npj Breast Cancer publishes original research articles, reviews, brief correspondence, meeting reports, editorial summaries and hypothesis generating observations which could be unexplained or preliminary findings from experiments, novel ideas, or the framing of new questions that need to be solved. Featured topics of the journal include imaging, immunotherapy, molecular classification of disease, mechanism-based therapies largely targeting signal transduction pathways, carcinogenesis including hereditary susceptibility and molecular epidemiology, survivorship issues including long-term toxicities of treatment and secondary neoplasm occurrence, the biophysics of cancer, mechanisms of metastasis and their perturbation, and studies of the tumor microenvironment.
期刊最新文献
Enabling sensitive and precise detection of ctDNA through somatic copy number aberrations in breast cancer. Prognostic and molecular multi-platform analysis of CALGB 40603 (Alliance) and public triple-negative breast cancer datasets. Machine learning-based spatial characterization of tumor-immune microenvironment in the EORTC 10994/BIG 1-00 early breast cancer trial. Real-World outcomes with sacituzumab govitecan among breast cancer patients with central nervous system metastases. Sequence of therapy impact on older women with comorbidities and triple-negative or HER2-positive breast cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1