Inferring phylogenetic networks from multifurcating trees via cherry picking and machine learning

IF 3.6 1区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Phylogenetics and Evolution Pub Date : 2024-07-17 DOI:10.1016/j.ympev.2024.108137
Giulia Bernardini , Leo van Iersel , Esther Julien , Leen Stougie
{"title":"Inferring phylogenetic networks from multifurcating trees via cherry picking and machine learning","authors":"Giulia Bernardini ,&nbsp;Leo van Iersel ,&nbsp;Esther Julien ,&nbsp;Leen Stougie","doi":"10.1016/j.ympev.2024.108137","DOIUrl":null,"url":null,"abstract":"<div><p>The Hybridization problem asks to reconcile a set of conflicting phylogenetic trees into a single phylogenetic network with the smallest possible number of reticulation nodes. This problem is computationally hard and previous solutions are limited to small and/or severely restricted data sets, for example, a set of binary trees with the same taxon set or only two non-binary trees with non-equal taxon sets. Building on our previous work on binary trees, we present <span>FHyNCH</span>, the first algorithmic framework to heuristically solve the Hybridization problem for large sets of multifurcating trees whose sets of taxa may differ. Our heuristics combine the cherry-picking technique, recently proposed to solve the same problem for binary trees, with two carefully designed machine-learning models. We demonstrate that our methods are practical and produce qualitatively good solutions through experiments on both synthetic and real data sets.</p></div>","PeriodicalId":56109,"journal":{"name":"Molecular Phylogenetics and Evolution","volume":"199 ","pages":"Article 108137"},"PeriodicalIF":3.6000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1055790324001295/pdfft?md5=aededa43382f7fa94b9e3b6e72546061&pid=1-s2.0-S1055790324001295-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Phylogenetics and Evolution","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1055790324001295","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Hybridization problem asks to reconcile a set of conflicting phylogenetic trees into a single phylogenetic network with the smallest possible number of reticulation nodes. This problem is computationally hard and previous solutions are limited to small and/or severely restricted data sets, for example, a set of binary trees with the same taxon set or only two non-binary trees with non-equal taxon sets. Building on our previous work on binary trees, we present FHyNCH, the first algorithmic framework to heuristically solve the Hybridization problem for large sets of multifurcating trees whose sets of taxa may differ. Our heuristics combine the cherry-picking technique, recently proposed to solve the same problem for binary trees, with two carefully designed machine-learning models. We demonstrate that our methods are practical and produce qualitatively good solutions through experiments on both synthetic and real data sets.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过樱桃采摘和机器学习从多叉树推断系统发育网络
杂交问题要求将一组相互冲突的系统发生树调和成一个具有尽可能少的网状节点的单一系统发生网络。这个问题在计算上很难解决,以往的解决方案仅限于小规模和/或严格受限的数据集,例如,具有相同分类群的二叉树集或只有两个非二叉树且分类群集不相等的数据集。基于我们之前在二叉树方面的工作,我们提出了 FHyNCH,这是第一个启发式解决大型多叉树杂交问题的算法框架,这些多叉树的分类群集可能不同。我们的启发式方法将最近为解决二叉树相同问题而提出的樱桃采摘技术与两个精心设计的机器学习模型相结合。通过对合成数据集和真实数据集的实验,我们证明了我们的方法是实用的,并能产生质量上乘的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Phylogenetics and Evolution
Molecular Phylogenetics and Evolution 生物-进化生物学
CiteScore
7.50
自引率
7.30%
发文量
249
审稿时长
7.5 months
期刊介绍: Molecular Phylogenetics and Evolution is dedicated to bringing Darwin''s dream within grasp - to "have fairly true genealogical trees of each great kingdom of Nature." The journal provides a forum for molecular studies that advance our understanding of phylogeny and evolution, further the development of phylogenetically more accurate taxonomic classifications, and ultimately bring a unified classification for all the ramifying lines of life. Phylogeographic studies will be considered for publication if they offer EXCEPTIONAL theoretical or empirical advances.
期刊最新文献
Forget-me-not phylogenomics: Improving the resolution and taxonomy of a rapid island and mountain radiation in Aotearoa New Zealand (Myosotis; Boraginaceae). Taken to extremes: Loss of plastid rpl32 in Streptophyta and Cuscuta's unconventional solution for its replacement. Phylogenetic origin of dioecious Callicarpa (Lamiaceae) species endemic to the Ogasawara Islands revealed by chloroplast and nuclear whole genome analyses Reassessing the evolutionary relationships of tropical wandering spiders using phylogenomics: A UCE-based phylogeny of Ctenidae (Araneae) with the discovery of a new lycosoid family Molecular phylogenetics of nursery web spiders (Araneae: Pisauridae)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1