Chemotactic recruitment of genetically engineered cell membrane-camouflaged metal−organic framework nanoparticles for ischemic osteonecrosis treatment

IF 9.4 1区 医学 Q1 ENGINEERING, BIOMEDICAL Acta Biomaterialia Pub Date : 2024-09-01 DOI:10.1016/j.actbio.2024.07.024
{"title":"Chemotactic recruitment of genetically engineered cell membrane-camouflaged metal−organic framework nanoparticles for ischemic osteonecrosis treatment","authors":"","doi":"10.1016/j.actbio.2024.07.024","DOIUrl":null,"url":null,"abstract":"<div><p>Ischemic osteonecrosis, particularly glucocorticoid-induced osteonecrosis of the femoral head (GIONFH), is primarily due to the dysfunction of osteogenesis and angiogenesis. miRNA, as a therapeutic system with immense potential, plays a vital role in the treatment of various diseases. However, due to the unique microenvironmental structure of bone tissue, especially in the case of GIONFH, where there is a deficiency in the vascular system, it is challenging to effectively target and deliver to the ischemic osteonecrosis area. A drug delivery system assisted by genetically engineered cell membranes holds promise in addressing the challenge of targeted miRNA delivery. Herein, we leverage the potential of miR-21 in modulating osteogenesis and angiogenesis to design an innovative biomimetic nanoplatform system. First, we employed metal-organic frameworks (MOFs) as the core structure to load miR-21-m (miR-21-m@MOF). The nanoparticles were further coated with the membrane of bone marrow mesenchymal stem cells overexpressing CXCR4 (CM-miR-21-m@MOF), enhancing their ability to target ischemic bone areas via the CXCR4-SDF1 axis. These biomimetic nanocomposites possess both bone-targeting and ischemia-guiding capabilities, actively targeting GIONFH lesions to release miR-21-m into target cells, thereby silencing PTEN gene and activating the PI3K-AKT signaling pathway to regulate osteogenesis and angiogenesis. This innovative miRNA delivery system provides a promising therapeutic avenue for GIONFH and potentially other related ischemic bone diseases.</p></div><div><h3>Statement of significance</h3><p></p><ul><li><span>1.</span><span><p>CXCR4-Engineered Membranes Enhance Targeting for Ischemic Osteonecrosis.</p></span></li><li><span>2.</span><span><p>miR-21-Based Gene Therapy for Regulating Osteogenesis and Angiogenesis.</p></span></li><li><span>3.</span><span><p>Expanding the Use of Membrane-Cloaked MOF Nanoparticles.</p></span></li></ul></div>","PeriodicalId":237,"journal":{"name":"Acta Biomaterialia","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biomaterialia","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1742706124003957","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ischemic osteonecrosis, particularly glucocorticoid-induced osteonecrosis of the femoral head (GIONFH), is primarily due to the dysfunction of osteogenesis and angiogenesis. miRNA, as a therapeutic system with immense potential, plays a vital role in the treatment of various diseases. However, due to the unique microenvironmental structure of bone tissue, especially in the case of GIONFH, where there is a deficiency in the vascular system, it is challenging to effectively target and deliver to the ischemic osteonecrosis area. A drug delivery system assisted by genetically engineered cell membranes holds promise in addressing the challenge of targeted miRNA delivery. Herein, we leverage the potential of miR-21 in modulating osteogenesis and angiogenesis to design an innovative biomimetic nanoplatform system. First, we employed metal-organic frameworks (MOFs) as the core structure to load miR-21-m (miR-21-m@MOF). The nanoparticles were further coated with the membrane of bone marrow mesenchymal stem cells overexpressing CXCR4 (CM-miR-21-m@MOF), enhancing their ability to target ischemic bone areas via the CXCR4-SDF1 axis. These biomimetic nanocomposites possess both bone-targeting and ischemia-guiding capabilities, actively targeting GIONFH lesions to release miR-21-m into target cells, thereby silencing PTEN gene and activating the PI3K-AKT signaling pathway to regulate osteogenesis and angiogenesis. This innovative miRNA delivery system provides a promising therapeutic avenue for GIONFH and potentially other related ischemic bone diseases.

Statement of significance

  • 1.

    CXCR4-Engineered Membranes Enhance Targeting for Ischemic Osteonecrosis.

  • 2.

    miR-21-Based Gene Therapy for Regulating Osteogenesis and Angiogenesis.

  • 3.

    Expanding the Use of Membrane-Cloaked MOF Nanoparticles.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于缺血性骨坏死治疗的基因工程细胞膜伪装金属有机框架纳米粒子的趋化性招募
缺血性骨坏死,尤其是糖皮质激素诱导的股骨头坏死(GIONFH),主要是由于成骨和血管生成功能障碍所致。miRNA作为一种具有巨大潜力的治疗系统,在各种疾病的治疗中发挥着至关重要的作用。然而,由于骨组织独特的微环境结构,尤其是GIONFH患者的血管系统存在缺陷,如何有效地靶向给药到缺血性骨坏死区域具有挑战性。由基因工程细胞膜辅助的给药系统有望解决 miRNA 靶向给药的难题。在此,我们利用 miR-21 在调节骨生成和血管生成方面的潜力,设计了一种创新的仿生纳米平台系统。首先,我们采用金属有机框架(MOFs)作为核心结构来负载 miR-21-m(miR-21-m@MOF)。纳米颗粒进一步包覆了过表达CXCR4的骨髓间充质干细胞膜(CM-miR-21-m@MOF),增强了它们通过CXCR4-SDF1轴靶向缺血骨区的能力。这些仿生纳米复合材料具有骨靶向和缺血引导能力,能主动靶向 GIONFH 病变,向靶细胞释放 miR-21-m,从而沉默 PTEN 基因,激活 PI3K-AKT 信号通路,调节骨生成和血管生成。这种创新的 miRNA 递送系统为治疗 GIONFH 以及其他潜在的相关缺血性骨病提供了一条前景广阔的治疗途径。意义声明:1.CXCR4 工程膜增强了缺血性骨坏死的靶向性。2. 基于 miR-21 的基因疗法可调节骨生成和血管生成。3.扩大膜包覆 MOF 纳米粒子的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Biomaterialia
Acta Biomaterialia 工程技术-材料科学:生物材料
CiteScore
16.80
自引率
3.10%
发文量
776
审稿时长
30 days
期刊介绍: Acta Biomaterialia is a monthly peer-reviewed scientific journal published by Elsevier. The journal was established in January 2005. The editor-in-chief is W.R. Wagner (University of Pittsburgh). The journal covers research in biomaterials science, including the interrelationship of biomaterial structure and function from macroscale to nanoscale. Topical coverage includes biomedical and biocompatible materials.
期刊最新文献
Editorial Board Site-specific tethering nanobodies on recombinant adeno-associated virus vectors for retargeted gene therapy A fibroblast activation protein α-activatable nanoagent co-delivering diethyldithiocarbamate and copper for tumor therapy and imaging Brain biodistribution of myelin nanovesicles with targeting potential for multiple sclerosis Collagen patches releasing phosphatidylserine liposomes guide M1-to-M2 macrophage polarization and accelerate simultaneous bone and muscle healing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1