Raphael Schäfer, Till Nicke, Henning Höfener, Annkristin Lange, Dorit Merhof, Friedrich Feuerhake, Volkmar Schulz, Johannes Lotz, Fabian Kiessling
{"title":"Overcoming data scarcity in biomedical imaging with a foundational multi-task model","authors":"Raphael Schäfer, Till Nicke, Henning Höfener, Annkristin Lange, Dorit Merhof, Friedrich Feuerhake, Volkmar Schulz, Johannes Lotz, Fabian Kiessling","doi":"10.1038/s43588-024-00662-z","DOIUrl":null,"url":null,"abstract":"Foundational models, pretrained on a large scale, have demonstrated substantial success across non-medical domains. However, training these models typically requires large, comprehensive datasets, which contrasts with the smaller and more specialized datasets common in biomedical imaging. Here we propose a multi-task learning strategy that decouples the number of training tasks from memory requirements. We trained a universal biomedical pretrained model (UMedPT) on a multi-task database including tomographic, microscopic and X-ray images, with various labeling strategies such as classification, segmentation and object detection. The UMedPT foundational model outperformed ImageNet pretraining and previous state-of-the-art models. For classification tasks related to the pretraining database, it maintained its performance with only 1% of the original training data and without fine-tuning. For out-of-domain tasks it required only 50% of the original training data. In an external independent validation, imaging features extracted using UMedPT proved to set a new standard for cross-center transferability. UMedPT, a foundational model for biomedical imaging, has been trained on a variety of medical tasks with different types of label. It has achieved high performance with less training data in various clinical applications.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 7","pages":"495-509"},"PeriodicalIF":12.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11288886/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00662-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Foundational models, pretrained on a large scale, have demonstrated substantial success across non-medical domains. However, training these models typically requires large, comprehensive datasets, which contrasts with the smaller and more specialized datasets common in biomedical imaging. Here we propose a multi-task learning strategy that decouples the number of training tasks from memory requirements. We trained a universal biomedical pretrained model (UMedPT) on a multi-task database including tomographic, microscopic and X-ray images, with various labeling strategies such as classification, segmentation and object detection. The UMedPT foundational model outperformed ImageNet pretraining and previous state-of-the-art models. For classification tasks related to the pretraining database, it maintained its performance with only 1% of the original training data and without fine-tuning. For out-of-domain tasks it required only 50% of the original training data. In an external independent validation, imaging features extracted using UMedPT proved to set a new standard for cross-center transferability. UMedPT, a foundational model for biomedical imaging, has been trained on a variety of medical tasks with different types of label. It has achieved high performance with less training data in various clinical applications.