Learning Signed Hyper Surfaces for Oriented Point Cloud Normal Estimation.

Qing Li, Huifang Feng, Kanle Shi, Yue Gao, Yi Fang, Yu-Shen Liu, Zhizhong Han
{"title":"Learning Signed Hyper Surfaces for Oriented Point Cloud Normal Estimation.","authors":"Qing Li, Huifang Feng, Kanle Shi, Yue Gao, Yi Fang, Yu-Shen Liu, Zhizhong Han","doi":"10.1109/TPAMI.2024.3431221","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a novel method called SHS-Net for point cloud normal estimation by learning signed hyper surfaces, which can accurately predict normals with global consistent orientation from various point clouds. Almost all existing methods estimate oriented normals through a two-stage pipeline, i.e., unoriented normal estimation and normal orientation, and each step is implemented by a separate algorithm. However, previous methods are sensitive to parameter settings, resulting in poor results from point clouds with noise, density variations and complex geometries. In this work, we introduce signed hyper surfaces (SHS), which are parameterized by multi-layer perceptron (MLP) layers, to learn to estimate oriented normals from point clouds in an end-to-end manner. The signed hyper surfaces are implicitly learned in a high-dimensional feature space where the local and global information is aggregated. Specifically, we introduce a patch encoding module and a shape encoding module to encode a 3D point cloud into a local latent code and a global latent code, respectively. Then, an attention-weighted normal prediction module is proposed as a decoder, which takes the local and global latent codes as input to predict oriented normals. Experimental results show that our algorithm outperforms the state-of-the-art methods in both unoriented and oriented normal estimation.</p>","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPAMI.2024.3431221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a novel method called SHS-Net for point cloud normal estimation by learning signed hyper surfaces, which can accurately predict normals with global consistent orientation from various point clouds. Almost all existing methods estimate oriented normals through a two-stage pipeline, i.e., unoriented normal estimation and normal orientation, and each step is implemented by a separate algorithm. However, previous methods are sensitive to parameter settings, resulting in poor results from point clouds with noise, density variations and complex geometries. In this work, we introduce signed hyper surfaces (SHS), which are parameterized by multi-layer perceptron (MLP) layers, to learn to estimate oriented normals from point clouds in an end-to-end manner. The signed hyper surfaces are implicitly learned in a high-dimensional feature space where the local and global information is aggregated. Specifically, we introduce a patch encoding module and a shape encoding module to encode a 3D point cloud into a local latent code and a global latent code, respectively. Then, an attention-weighted normal prediction module is proposed as a decoder, which takes the local and global latent codes as input to predict oriented normals. Experimental results show that our algorithm outperforms the state-of-the-art methods in both unoriented and oriented normal estimation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为定向点云法线估计学习签名超曲面
我们提出了一种名为 SHS-Net 的新方法,通过学习有符号的超曲面来估计点云法线,该方法可以从各种点云中准确预测具有全局一致方向的法线。几乎所有现有方法都是通过两阶段管道(即无方向法线估算和法线定向)来估算有方向的法线,每一步都由单独的算法实现。然而,以前的方法对参数设置很敏感,导致在有噪声、密度变化和复杂几何形状的点云中效果不佳。在这项工作中,我们引入了有符号的超曲面(SHS),通过多层感知器(MLP)层进行参数设置,以端到端方式学习估计点云的方向法线。有符号的超曲面是在高维特征空间中隐含学习的,其中汇聚了局部和全局信息。具体来说,我们引入了补丁编码模块和形状编码模块,将三维点云分别编码为局部潜码和全局潜码。然后,我们提出了一个注意力加权法线预测模块作为解码器,该模块将局部潜码和全局潜码作为输入来预测定向法线。实验结果表明,我们的算法在非定向和定向法线估计方面都优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Diversifying Policies with Non-Markov Dispersion to Expand the Solution Space. Integrating Neural Radiance Fields End-to-End for Cognitive Visuomotor Navigation. Variational Label Enhancement for Instance-Dependent Partial Label Learning. TagCLIP: Improving Discrimination Ability of Zero-Shot Semantic Segmentation. Efficient Neural Collaborative Search for Pickup and Delivery Problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1