Regulation of AreA on lipid biosynthesis under different nitrogen sources and C/N ratios in the model oleaginous fungus Mucor circinelloides

IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochimica et biophysica acta. Molecular and cell biology of lipids Pub Date : 2024-07-19 DOI:10.1016/j.bbalip.2024.159537
Xiuwen Wang, Shaoqi Li, Shuxian Pang, Qing Liu, Yuanda Song
{"title":"Regulation of AreA on lipid biosynthesis under different nitrogen sources and C/N ratios in the model oleaginous fungus Mucor circinelloides","authors":"Xiuwen Wang,&nbsp;Shaoqi Li,&nbsp;Shuxian Pang,&nbsp;Qing Liu,&nbsp;Yuanda Song","doi":"10.1016/j.bbalip.2024.159537","DOIUrl":null,"url":null,"abstract":"<div><p><em>Mucor circinelloides</em> has been exploited as model filamentous fungi for studies of genetic manipulation of lipogenesis. It is widely recognized that lipid accumulation is increased when there is a lack of nitrogen source in oleaginous microorganism. Nitrogen metabolism in filamentous fungi is a complex process that can be regulated by the global nitrogen regulator AreA. In this study, we cultivated the <em>areA</em>-knockout and -overexpression strains obtained in our previous study, using 20 different nitrogen sources. It emerged that the disruption of AreA in <em>M. circinelloides</em> reduced its sensitivity to nitrogen availability, resulting in increased lipid synthesis. Specially, the <em>areA</em>-knockout strain was unable to fully utilize many nitrogen sources but the ammonium and glutamate. We continued to investigate lipid production at different molar C/N ratios using glucose as sole carbon source and ammonium sulfate as sole nitrogen source, of which the high C/N ratios activate high lipid accumulation. By comparing the experimental results with transcriptional analysis, we were able to identify the optimal process conditions suitable for lipid accumulation and potential targets for future metabolic engineering.</p></div>","PeriodicalId":8815,"journal":{"name":"Biochimica et biophysica acta. Molecular and cell biology of lipids","volume":"1869 7","pages":"Article 159537"},"PeriodicalIF":3.9000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular and cell biology of lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388198124000878","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mucor circinelloides has been exploited as model filamentous fungi for studies of genetic manipulation of lipogenesis. It is widely recognized that lipid accumulation is increased when there is a lack of nitrogen source in oleaginous microorganism. Nitrogen metabolism in filamentous fungi is a complex process that can be regulated by the global nitrogen regulator AreA. In this study, we cultivated the areA-knockout and -overexpression strains obtained in our previous study, using 20 different nitrogen sources. It emerged that the disruption of AreA in M. circinelloides reduced its sensitivity to nitrogen availability, resulting in increased lipid synthesis. Specially, the areA-knockout strain was unable to fully utilize many nitrogen sources but the ammonium and glutamate. We continued to investigate lipid production at different molar C/N ratios using glucose as sole carbon source and ammonium sulfate as sole nitrogen source, of which the high C/N ratios activate high lipid accumulation. By comparing the experimental results with transcriptional analysis, we were able to identify the optimal process conditions suitable for lipid accumulation and potential targets for future metabolic engineering.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在不同氮源和碳/氮比条件下AreA对油脂模型真菌Mucor circinelloides脂质生物合成的调控
Mucor circinelloides 已被用作研究脂肪生成遗传操作的模式丝状真菌。人们普遍认为,当含油微生物缺乏氮源时,脂质积累会增加。丝状真菌的氮代谢是一个复杂的过程,可受全局氮调节因子 AreA 的调控。在本研究中,我们利用 20 种不同的氮源培养了之前研究中获得的 AreA 基因敲除和基因转表达菌株。结果表明,环带褐藻中 AreA 的破坏降低了其对氮素供应的敏感性,导致脂质合成增加。特别是,除了铵和谷氨酸外,areA 基因敲除菌株无法充分利用多种氮源。我们继续研究了以葡萄糖为唯一碳源和以硫酸铵为唯一氮源的不同摩尔 C/N 比下的脂质生产,其中高 C/N 比激活了高脂质积累。通过将实验结果与转录分析进行比较,我们确定了适合脂质积累的最佳工艺条件以及未来代谢工程的潜在目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.00
自引率
2.10%
发文量
109
审稿时长
53 days
期刊介绍: BBA Molecular and Cell Biology of Lipids publishes papers on original research dealing with novel aspects of molecular genetics related to the lipidome, the biosynthesis of lipids, the role of lipids in cells and whole organisms, the regulation of lipid metabolism and function, and lipidomics in all organisms. Manuscripts should significantly advance the understanding of the molecular mechanisms underlying biological processes in which lipids are involved. Papers detailing novel methodology must report significant biochemical, molecular, or functional insight in the area of lipids.
期刊最新文献
Hippo pathway activation causes multiple lipid derangements in a murine model of cardiomyopathy. Expression, purification and characterization of a dual function α-dioxygenase/peroxidase from Mycolicibacterium smegmatis. Effect of glucose selenol on hepatic lipid metabolism disorder induced by heavy metal cadmium in male rats. Effect of N-glycosylation on secretion, degradation and lipoprotein distribution of human serum amyloid A4. Origin and evolution of yeast carotenoid pathways.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1