{"title":"Increasing the service life prediction accuracy of linear guideways considering real operating conditions","authors":"","doi":"10.1016/j.mechmachtheory.2024.105734","DOIUrl":null,"url":null,"abstract":"<div><p>The paper describes two novel calculation methods that can predict the service life of linear guideways more accurately than the conventional method. The first method is based on a linear damage accumulation in each rolling contact, which can take into account changing load cycles for a statistically based long-term remaining service life estimation. Since this statistically based estimation still has some inaccuracies, a second method is proposed that uses a dynamic simulation model of the linear guideway to perform a model-based condition monitoring. With this method, a more accurate damage-based prediction of the remaining useful service life can be made in the short term. The dynamic model takes into account both the elasticity of the Hertzian rolling contact and the elasticities of the carriage and rail depending on the dynamic rolling element circulation. The model also includes a simplified pitting model which allows the actual pitting size to be calculated by comparing the simulated vibration behaviour with the measured vibration behaviour. The calculated pitting propagation velocity is used to estimate the remaining useful service life.</p></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0094114X24001617/pdfft?md5=dfecc82ca33a13b54853f736cfed374e&pid=1-s2.0-S0094114X24001617-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X24001617","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The paper describes two novel calculation methods that can predict the service life of linear guideways more accurately than the conventional method. The first method is based on a linear damage accumulation in each rolling contact, which can take into account changing load cycles for a statistically based long-term remaining service life estimation. Since this statistically based estimation still has some inaccuracies, a second method is proposed that uses a dynamic simulation model of the linear guideway to perform a model-based condition monitoring. With this method, a more accurate damage-based prediction of the remaining useful service life can be made in the short term. The dynamic model takes into account both the elasticity of the Hertzian rolling contact and the elasticities of the carriage and rail depending on the dynamic rolling element circulation. The model also includes a simplified pitting model which allows the actual pitting size to be calculated by comparing the simulated vibration behaviour with the measured vibration behaviour. The calculated pitting propagation velocity is used to estimate the remaining useful service life.
期刊介绍:
Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal.
The main topics are:
Design Theory and Methodology;
Haptics and Human-Machine-Interfaces;
Robotics, Mechatronics and Micro-Machines;
Mechanisms, Mechanical Transmissions and Machines;
Kinematics, Dynamics, and Control of Mechanical Systems;
Applications to Bioengineering and Molecular Chemistry