Jan E. Marquardt , Nicolas Hafen , Mathias J. Krause
{"title":"A novel model for direct numerical simulation of suspension dynamics with arbitrarily shaped convex particles","authors":"Jan E. Marquardt , Nicolas Hafen , Mathias J. Krause","doi":"10.1016/j.cpc.2024.109321","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents an innovative direct numerical simulation approach for complex particle systems with irregular shapes and large numbers. Using partially saturated methods, it accurately models arbitrary shapes, albeit at considerable computational cost when integrating a compatible contact model. The introduction of a novel parallelization strategy significantly improves the performance of the contact model, enabling efficient four-way coupled simulations. Through hindered settling studies, the criticality of the explicit contact model for maintaining simulation accuracy is highlighted, especially at high particle volume fractions and low Archimedes numbers. The feasibility of simulating thousands of arbitrarily shaped convex particles is demonstrated with up to 1934 surface-resolved particles. The study also confirms the grid independence and linear convergence of the method. It shows for the first time that cube swarms settle 13 to 26% slower than swarms of volume-equivalent spheres across different Archimedes numbers (500 to 2000) and particle volume fractions (10 to 30%). These findings emphasize the shape dependence of particle systems and suggest avenues for exploring their nuanced dynamics.</p></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"304 ","pages":"Article 109321"},"PeriodicalIF":7.2000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0010465524002443/pdfft?md5=aefa678974806198e79fd9446b434c5b&pid=1-s2.0-S0010465524002443-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465524002443","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents an innovative direct numerical simulation approach for complex particle systems with irregular shapes and large numbers. Using partially saturated methods, it accurately models arbitrary shapes, albeit at considerable computational cost when integrating a compatible contact model. The introduction of a novel parallelization strategy significantly improves the performance of the contact model, enabling efficient four-way coupled simulations. Through hindered settling studies, the criticality of the explicit contact model for maintaining simulation accuracy is highlighted, especially at high particle volume fractions and low Archimedes numbers. The feasibility of simulating thousands of arbitrarily shaped convex particles is demonstrated with up to 1934 surface-resolved particles. The study also confirms the grid independence and linear convergence of the method. It shows for the first time that cube swarms settle 13 to 26% slower than swarms of volume-equivalent spheres across different Archimedes numbers (500 to 2000) and particle volume fractions (10 to 30%). These findings emphasize the shape dependence of particle systems and suggest avenues for exploring their nuanced dynamics.
期刊介绍:
The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper.
Computer Programs in Physics (CPiP)
These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged.
Computational Physics Papers (CP)
These are research papers in, but are not limited to, the following themes across computational physics and related disciplines.
mathematical and numerical methods and algorithms;
computational models including those associated with the design, control and analysis of experiments; and
algebraic computation.
Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.