Robust Beamforming Design for Integrated Sensing and Communication Systems

Yongjun Xu;Na Cao;Yi Jin;Haibo Zhang;Chongwen Huang;Qianbin Chen;Chau Yuen
{"title":"Robust Beamforming Design for Integrated Sensing and Communication Systems","authors":"Yongjun Xu;Na Cao;Yi Jin;Haibo Zhang;Chongwen Huang;Qianbin Chen;Chau Yuen","doi":"10.1109/JSAS.2024.3421391","DOIUrl":null,"url":null,"abstract":"Integrated sensing and communication (ISAC) can improve spectral, energy, and transmission efficiency. To overcome the impact of channel uncertainties, we investigate a robust beamforming design problem for a multiple-input single-output based ISAC system with imperfect channel state information (CSI), where a multiantenna base station (BS) serves multiple wireless users and obtains state information of a point target. Based on bounded CSI error models, a total throughput maximization problem is formulated under the constraints of the minimum rate threshold of each communication user, sensing performance based on Cramér–Rao lower bound thresholds, and the maximum transmit power of the BS. The formulated problem with parameter perturbations belongs to a nonconvex one that is challenging to solve. To address this complexity, an iterative robust beamforming algorithm is designed by employing S-procedure, semidefinite relaxation technique, Schur complementarity conditions, and successive convex approximation. Simulation results demonstrate that the proposed algorithm exhibits better convergence and stronger robustness.","PeriodicalId":100622,"journal":{"name":"IEEE Journal of Selected Areas in Sensors","volume":"1 ","pages":"114-123"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10582401","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Areas in Sensors","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10582401/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Integrated sensing and communication (ISAC) can improve spectral, energy, and transmission efficiency. To overcome the impact of channel uncertainties, we investigate a robust beamforming design problem for a multiple-input single-output based ISAC system with imperfect channel state information (CSI), where a multiantenna base station (BS) serves multiple wireless users and obtains state information of a point target. Based on bounded CSI error models, a total throughput maximization problem is formulated under the constraints of the minimum rate threshold of each communication user, sensing performance based on Cramér–Rao lower bound thresholds, and the maximum transmit power of the BS. The formulated problem with parameter perturbations belongs to a nonconvex one that is challenging to solve. To address this complexity, an iterative robust beamforming algorithm is designed by employing S-procedure, semidefinite relaxation technique, Schur complementarity conditions, and successive convex approximation. Simulation results demonstrate that the proposed algorithm exhibits better convergence and stronger robustness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
综合传感与通信系统的鲁棒波束成形设计
综合传感与通信(ISAC)可提高频谱、能量和传输效率。为了克服信道不确定性的影响,我们研究了信道状态信息(CSI)不完善的基于多输入单输出的 ISAC 系统的鲁棒波束成形设计问题,其中多天线基站(BS)为多个无线用户提供服务,并获取点目标的状态信息。基于有界 CSI 误差模型,在每个通信用户的最小速率阈值、基于 Cramér-Rao 下限阈值的传感性能和 BS 最大发射功率的约束下,提出了总吞吐量最大化问题。所提出的问题带有参数扰动,属于非凸问题,求解难度很大。针对这一复杂性,设计了一种迭代鲁棒波束成形算法,该算法采用了 S 过程、半定量松弛技术、舒尔互补条件和连续凸近似。仿真结果表明,所提出的算法具有更好的收敛性和更强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Survey on Digital Twins: Enabling Technologies, Use Cases, Application, Open Issues, and More FallAware: An Explainable Learning Approach to Robust Fall Detection With WiFi Nonparametric Multitarget Data Association and Tracking for Multistatic Radars SrcSense: Robust WiFi-Based Motion Source Recognition via Signal-Informed Deep Learning Assessing the Impact of Distractions Using a Virtual-Reality-Based GO/NOGO Task
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1