S. Racano, P. A. van der Beek, T. F. Schildgen, C. Faccenna, V. Buleo Tebar, D. Cosentino
{"title":"Slab Driven Quaternary Rock-Uplift and Topographic Evolution in the Northern-Central Apennines From Linear Inversion of the Drainage System","authors":"S. Racano, P. A. van der Beek, T. F. Schildgen, C. Faccenna, V. Buleo Tebar, D. Cosentino","doi":"10.1029/2024GC011592","DOIUrl":null,"url":null,"abstract":"<p>Investigating rock-uplift variations in time and space provides insights into the processes driving mountain-belt evolution. The Apennine Mountains of Italy underwent substantial Quaternary rock uplift that shaped the present-day topography. Here, we present linear river-profile inversions for 28 catchments draining the eastern flank of the Northern-Central Apennines to reconstruct rock-uplift histories. We calibrated these results by estimating an erodibility coefficient (<i>K</i>) from incision rates and catchment-averaged erosion rates obtained from cosmogenic-nuclide data, and we tested whether a uniform or variable <i>K</i> produces a rock-uplift model that satisfactorily fits independent geochronological constraints. We employ a landscape-evolution model to demonstrate that our inversion results are reliable despite substantial seaward lengthening of the catchments during uplift. Our findings suggest that a rock-uplift pulse started around 3.0–2.5 Ma, coinciding with the onset of extension in the Apennines, and migrated southward at a rate of ∼90 km/Myr. The highest reconstructed rock-uplift rates (>1 km/Myr) occur in the region encompassing the highest Apennine massifs. These results are consistent with numerical models and field evidence from other regions exhibiting rapid rock-uplift pulses and uplift migration related to slab break-off. Our results support the hypothesis of break-off of the Adria slab under the central Apennines and its southward propagation during the Quaternary. Moreover, the results suggest a renewed increase in rock-uplift rates after the Middle Pleistocene along the Adriatic coast, coeval with recent uplift acceleration along the eastern coast of southern Italy in the Apulian foreland.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"25 7","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011592","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011592","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Investigating rock-uplift variations in time and space provides insights into the processes driving mountain-belt evolution. The Apennine Mountains of Italy underwent substantial Quaternary rock uplift that shaped the present-day topography. Here, we present linear river-profile inversions for 28 catchments draining the eastern flank of the Northern-Central Apennines to reconstruct rock-uplift histories. We calibrated these results by estimating an erodibility coefficient (K) from incision rates and catchment-averaged erosion rates obtained from cosmogenic-nuclide data, and we tested whether a uniform or variable K produces a rock-uplift model that satisfactorily fits independent geochronological constraints. We employ a landscape-evolution model to demonstrate that our inversion results are reliable despite substantial seaward lengthening of the catchments during uplift. Our findings suggest that a rock-uplift pulse started around 3.0–2.5 Ma, coinciding with the onset of extension in the Apennines, and migrated southward at a rate of ∼90 km/Myr. The highest reconstructed rock-uplift rates (>1 km/Myr) occur in the region encompassing the highest Apennine massifs. These results are consistent with numerical models and field evidence from other regions exhibiting rapid rock-uplift pulses and uplift migration related to slab break-off. Our results support the hypothesis of break-off of the Adria slab under the central Apennines and its southward propagation during the Quaternary. Moreover, the results suggest a renewed increase in rock-uplift rates after the Middle Pleistocene along the Adriatic coast, coeval with recent uplift acceleration along the eastern coast of southern Italy in the Apulian foreland.
期刊介绍:
Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged.
Areas of interest for this peer-reviewed journal include, but are not limited to:
The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution
Principles and applications of geochemical proxies to studies of Earth history
The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them
The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales
Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets
The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets
Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.