Characterization, phylogenetic analysis and toxigenic potential of Fusarium incarnatum-equiseti species complex isolates associated with root rot disease in vegetables
{"title":"Characterization, phylogenetic analysis and toxigenic potential of Fusarium incarnatum-equiseti species complex isolates associated with root rot disease in vegetables","authors":"Debraj Ghosal, Bejoysekhar Datta","doi":"10.1111/jph.13362","DOIUrl":null,"url":null,"abstract":"<p><i>Fusarium incarnatum-equiseti</i> species complex infects a wide variety of food crops. Six fungal isolates were isolated from rotted roots of <i>Dolichos lablab</i> (hyacinth bean), <i>Trichosanthes dioica</i> (pointed gourd), <i>Momordica dioica</i> (spiny gourd), <i>Capsicum frutescens</i> (chilli) and <i>Pisum sativum</i> (garden pea), and identified as <i>Fusarium</i> spp., belonging to <i>Fusarium incarnatum-equiseti</i> species complex (FIESC), through conidial morphology, sporodochia on carnation leaf agar medium and sequencing of nuclear ITS-rRNA and transcription elongation factor 1α gene. Multilocus phylogenetic analysis demonstrated their inclusion within the <i>Incarnatum</i> clade of FIESC. All of them were self-incompatible and failed to pair with other isolates. Vegetative incompatibility affected their pathogenicity and host specificity. The isolates secreted extracellular cell wall degrading enzymes cellulase (0.033 ± 0.002–0.403 ± 0.020 U.mL<sup>−1</sup>), polygalacturonase (0.005 ± 0.0001–0.392 ± 0.010 U.mL<sup>−1</sup>) and pectin-lyase (0.015 ± 0.001–0.407 ± 0.012 U.mL<sup>−1</sup>) for direct penetration to root tissue. They also secreted toxic metabolites that inhibited germination of <i>Cicer arietium</i> (chickpea) and <i>Pisum sativum</i> (garden pea) seeds. The isolates exhibited complete pathogenicity on their original hosts (death due to root rotting, Disease Severity Index- 100%) but less pathogenicity in other non-host plants (yellowing of lower leaves without sign of root rot, Disease Severity Index- <20%). This study reported the production of plant cell wall degrading enzymes and toxic metabolites by some pathogens belonging to FIESC and three new hosts of the pathogen such as hyacinth bean, spiny gourd and garden pea, from the Indian subcontinent.</p>","PeriodicalId":16843,"journal":{"name":"Journal of Phytopathology","volume":"172 4","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Phytopathology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jph.13362","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Fusarium incarnatum-equiseti species complex infects a wide variety of food crops. Six fungal isolates were isolated from rotted roots of Dolichos lablab (hyacinth bean), Trichosanthes dioica (pointed gourd), Momordica dioica (spiny gourd), Capsicum frutescens (chilli) and Pisum sativum (garden pea), and identified as Fusarium spp., belonging to Fusarium incarnatum-equiseti species complex (FIESC), through conidial morphology, sporodochia on carnation leaf agar medium and sequencing of nuclear ITS-rRNA and transcription elongation factor 1α gene. Multilocus phylogenetic analysis demonstrated their inclusion within the Incarnatum clade of FIESC. All of them were self-incompatible and failed to pair with other isolates. Vegetative incompatibility affected their pathogenicity and host specificity. The isolates secreted extracellular cell wall degrading enzymes cellulase (0.033 ± 0.002–0.403 ± 0.020 U.mL−1), polygalacturonase (0.005 ± 0.0001–0.392 ± 0.010 U.mL−1) and pectin-lyase (0.015 ± 0.001–0.407 ± 0.012 U.mL−1) for direct penetration to root tissue. They also secreted toxic metabolites that inhibited germination of Cicer arietium (chickpea) and Pisum sativum (garden pea) seeds. The isolates exhibited complete pathogenicity on their original hosts (death due to root rotting, Disease Severity Index- 100%) but less pathogenicity in other non-host plants (yellowing of lower leaves without sign of root rot, Disease Severity Index- <20%). This study reported the production of plant cell wall degrading enzymes and toxic metabolites by some pathogens belonging to FIESC and three new hosts of the pathogen such as hyacinth bean, spiny gourd and garden pea, from the Indian subcontinent.
期刊介绍:
Journal of Phytopathology publishes original and review articles on all scientific aspects of applied phytopathology in agricultural and horticultural crops. Preference is given to contributions improving our understanding of the biotic and abiotic determinants of plant diseases, including epidemics and damage potential, as a basis for innovative disease management, modelling and forecasting. This includes practical aspects and the development of methods for disease diagnosis as well as infection bioassays.
Studies at the population, organism, physiological, biochemical and molecular genetic level are welcome. The journal scope comprises the pathology and epidemiology of plant diseases caused by microbial pathogens, viruses and nematodes.
Accepted papers should advance our conceptual knowledge of plant diseases, rather than presenting descriptive or screening data unrelated to phytopathological mechanisms or functions. Results from unrepeated experimental conditions or data with no or inappropriate statistical processing will not be considered. Authors are encouraged to look at past issues to ensure adherence to the standards of the journal.