PACS-1 variant protein is aberrantly localized in C. elegans model of PACS1/PACS2 syndromes.

IF 3.3 3区 生物学 Q2 GENETICS & HEREDITY Genetics Pub Date : 2024-07-20 DOI:10.1093/genetics/iyae118
Dana T Byrd, Ziyuan Christina Han, Christopher A Piggott, Yishi Jin
{"title":"PACS-1 variant protein is aberrantly localized in C. elegans model of PACS1/PACS2 syndromes.","authors":"Dana T Byrd, Ziyuan Christina Han, Christopher A Piggott, Yishi Jin","doi":"10.1093/genetics/iyae118","DOIUrl":null,"url":null,"abstract":"<p><p>PACS (Phosphofurin Acidic Cluster Sorting Protein) proteins are known for their roles in sorting cargo proteins to organelles and can physically interact with WD40 repeat-containing protein WDR37. PACS1, PACS2, and WDR37 variants are associated with multisystemic syndromes and neurodevelopmental disorders characterized by intellectual disability, seizures, developmental delays, craniofacial abnormalities, and autism spectrum disorder. However, the functional effects of syndromic variants at the cellular level remain unknown. Here, we report the expression pattern of C. elegans orthologs of PACS and WDR37 and their interaction. We show that cePACS-1 and ceWDR-37 co-localize to somatic cytoplasm of many types of cells, and are mutually required for expression, supporting a conclusion that the intermolecular dependence of PACS1/PACS2/PACS-1 and WDR37/WDR-37 is evolutionarily conserved. We further show that editing in PACS1 and PACS2 variants in cePACS-1 changes protein localization in multiple cell types, including neurons. Moreover, expression of human PACS1 can functionally complement C. elegans PACS-1 in neurons, demonstrating conserved functions of the PACS-WDR37 axis in an invertebrate model system. Our findings reveal effects of human variants and suggest potential strategies to identify regulatory network components that may contribute to understanding molecular underpinnings of PACS/WDR37 syndromes.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyae118","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

PACS (Phosphofurin Acidic Cluster Sorting Protein) proteins are known for their roles in sorting cargo proteins to organelles and can physically interact with WD40 repeat-containing protein WDR37. PACS1, PACS2, and WDR37 variants are associated with multisystemic syndromes and neurodevelopmental disorders characterized by intellectual disability, seizures, developmental delays, craniofacial abnormalities, and autism spectrum disorder. However, the functional effects of syndromic variants at the cellular level remain unknown. Here, we report the expression pattern of C. elegans orthologs of PACS and WDR37 and their interaction. We show that cePACS-1 and ceWDR-37 co-localize to somatic cytoplasm of many types of cells, and are mutually required for expression, supporting a conclusion that the intermolecular dependence of PACS1/PACS2/PACS-1 and WDR37/WDR-37 is evolutionarily conserved. We further show that editing in PACS1 and PACS2 variants in cePACS-1 changes protein localization in multiple cell types, including neurons. Moreover, expression of human PACS1 can functionally complement C. elegans PACS-1 in neurons, demonstrating conserved functions of the PACS-WDR37 axis in an invertebrate model system. Our findings reveal effects of human variants and suggest potential strategies to identify regulatory network components that may contribute to understanding molecular underpinnings of PACS/WDR37 syndromes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PACS1/PACS2综合征模型中的PACS-1变体蛋白定位异常。
众所周知,PACS(磷酸呋喃酸性簇分选蛋白)蛋白能将货物蛋白分选到细胞器中,并能与含 WD40 重复蛋白的 WDR37 发生物理相互作用。PACS1、PACS2 和 WDR37 变体与以智力障碍、癫痫发作、发育迟缓、颅面异常和自闭症谱系障碍为特征的多系统综合征和神经发育障碍有关。然而,综合征变异在细胞水平上的功能影响仍然未知。在这里,我们报告了 elegans PACS 和 WDR37 的直向同源物的表达模式及其相互作用。我们发现cePACS-1和ceWDR-37共同定位在多种类型细胞的体细胞质中,并且是相互需要的表达,这支持了PACS1/PACS2/PACS-1和WDR37/WDR-37的分子间依赖性是进化保守的结论。我们进一步发现,cePACS-1中PACS1和PACS2变体的编辑改变了蛋白质在包括神经元在内的多种细胞类型中的定位。此外,人类 PACS1 的表达能在神经元中对 elegans PACS-1 进行功能互补,这证明了 PACS-WDR37 轴在无脊椎动物模型系统中的保守功能。我们的发现揭示了人类变体的影响,并提出了识别调控网络成分的潜在策略,这些策略可能有助于理解 PACS/WDR37 综合征的分子基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Genetics
Genetics GENETICS & HEREDITY-
CiteScore
6.90
自引率
6.10%
发文量
177
审稿时长
1.5 months
期刊介绍: GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work. While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal. The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists. GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.
期刊最新文献
Admixture in the fungal pathogen Blastomyces. An explanation for the sister repulsion phenomenon in Patterson's f-statistics. The Raf/LIN-45 C-terminal distal tail segment negatively regulates signaling in Caenorhabditis elegans. Revisiting the role of the spindle assembly checkpoint in the formation of gross chromosomal rearrangements in Saccharomyces cerevisiae. An anatomical atlas of Drosophila melanogaster-the wild-type.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1