Yangkun Xia , Xinran Luo , Wei Yang , Ting Jin , Jun Li , Lining Xing , Lijun Pan
{"title":"Dynamic variable analysis guided adaptive evolutionary multi-objective scheduling for large-scale workflows in cloud computing","authors":"Yangkun Xia , Xinran Luo , Wei Yang , Ting Jin , Jun Li , Lining Xing , Lijun Pan","doi":"10.1016/j.swevo.2024.101654","DOIUrl":null,"url":null,"abstract":"<div><p>Energy consumption and makespan of workflow execution are two core performance indicators in operating cloud platforms. But, simultaneously optimizing these two indicators encounters various challenges, such as elastic resources, large-scale decision variables, and sophisticated workflow structures. To handle these challenges, we design an adaptive evolutionary scheduling algorithm, namely AESA, with three innovative strategies. First, a heuristic population initialization strategy is devised to gather workflow tasks onto limited potential resources, thereby alleviating the negative impact of redundant cloud resources on evolutionary search efficiency. Then, a variable analysis strategy is designed to dynamically measure the contribution of each decision variable in pushing the population towards Pareto-optimal fronts. Moreover, AESA embraces an adaptive strategy to reward more evolutionary opportunities for decision variables with higher contributions to handle large-scale decision variables in a targeted manner, further improving the efficiency of evolutionary search. Finally, extensive experiments are performed based on real-world cloud platforms and workflow traces to verify the effectiveness of the proposed AESA. The comparison results validate its superior performance by significantly outperforming five representative baselines in optimizing makespan and energy consumption. Also, the results of ablation experiments demonstrate that all three components contribute to AESA’s overall performance, with the adaptive reward mechanism being the most significant.</p></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"90 ","pages":"Article 101654"},"PeriodicalIF":8.2000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650224001925","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Energy consumption and makespan of workflow execution are two core performance indicators in operating cloud platforms. But, simultaneously optimizing these two indicators encounters various challenges, such as elastic resources, large-scale decision variables, and sophisticated workflow structures. To handle these challenges, we design an adaptive evolutionary scheduling algorithm, namely AESA, with three innovative strategies. First, a heuristic population initialization strategy is devised to gather workflow tasks onto limited potential resources, thereby alleviating the negative impact of redundant cloud resources on evolutionary search efficiency. Then, a variable analysis strategy is designed to dynamically measure the contribution of each decision variable in pushing the population towards Pareto-optimal fronts. Moreover, AESA embraces an adaptive strategy to reward more evolutionary opportunities for decision variables with higher contributions to handle large-scale decision variables in a targeted manner, further improving the efficiency of evolutionary search. Finally, extensive experiments are performed based on real-world cloud platforms and workflow traces to verify the effectiveness of the proposed AESA. The comparison results validate its superior performance by significantly outperforming five representative baselines in optimizing makespan and energy consumption. Also, the results of ablation experiments demonstrate that all three components contribute to AESA’s overall performance, with the adaptive reward mechanism being the most significant.
期刊介绍:
Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.