Leucine rich α2 glycoprotein 1 derived from malignant pleural mesothelioma cells facilitates macrophage M2 phenotypes.

IF 1.5 4区 医学 Q3 RESPIRATORY SYSTEM Experimental Lung Research Pub Date : 2024-01-01 Epub Date: 2024-07-21 DOI:10.1080/01902148.2024.2380988
Dandan Wang, Wenjing Pei, Yanfei Liu, Rongliang Mo, Xinru Li, Wenhui Gu, Yi Su, Jing Ye, Jiegou Xu, Dahai Zhao
{"title":"Leucine rich α2 glycoprotein 1 derived from malignant pleural mesothelioma cells facilitates macrophage M2 phenotypes.","authors":"Dandan Wang, Wenjing Pei, Yanfei Liu, Rongliang Mo, Xinru Li, Wenhui Gu, Yi Su, Jing Ye, Jiegou Xu, Dahai Zhao","doi":"10.1080/01902148.2024.2380988","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Macrophages constitute the main part of infiltrating immune cells in Malignant pleural mesothelioma (MPM) and abnormally high ratios of M2 macrophages are present in both pleural effusion and tissue samples of MPM patients. Whether MPM cells affect formation of M2 macrophages is poorly understood. In this study, we focused on identification of MPM-cells-derived soluble factors with M2-promoting effects. <b>Methods:</b> Media of malignant pleural mesothelioma cells were collected and soluble factors affecting macrophages were analyzed by mass spectrometry. TGF-β receptor inhibitor SB431542 was used as the entry point to explore the downstream mechanism of action by qRT-PCR, WB and immunofluorescence. <b>Results:</b> The serum-free culture media collected from the human MPM cells Meso1 and Meso2 significantly enhanced expression of the M2 signature molecules including IL-10, TGF-β and CD206 in the human macrophages THP-1, while the culture medium of the human MPM cells H2452 did not show such M2-promoting effects. Analysis of proteins by mass spectrometry and ELISA suggested that Leucine rich α2 glycoprotein 1(LRG1) was a potential candidate. LRG1 time- and dose-dependently increased expression of the M2 signature molecules, confirming its M2-promoting effects. Furthermore, LRG1's M2-promoting effects were reduced by the TGF-β receptor inhibitor SB431542, and LRG1 increased phosphorylation of Smad2, indicating that M2-promoting effects of LRG1 were <i>via</i> the TGF-β receptor/Smad2 signaling pathway. <b>Conclusions:</b> Our results provide a potential M2-promoting new member, LRG1, which contributes to the immune escape of MPM via the TGF-β receptor/Smad2 signaling pathway.</p>","PeriodicalId":12206,"journal":{"name":"Experimental Lung Research","volume":"50 1","pages":"136-145"},"PeriodicalIF":1.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Lung Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01902148.2024.2380988","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Macrophages constitute the main part of infiltrating immune cells in Malignant pleural mesothelioma (MPM) and abnormally high ratios of M2 macrophages are present in both pleural effusion and tissue samples of MPM patients. Whether MPM cells affect formation of M2 macrophages is poorly understood. In this study, we focused on identification of MPM-cells-derived soluble factors with M2-promoting effects. Methods: Media of malignant pleural mesothelioma cells were collected and soluble factors affecting macrophages were analyzed by mass spectrometry. TGF-β receptor inhibitor SB431542 was used as the entry point to explore the downstream mechanism of action by qRT-PCR, WB and immunofluorescence. Results: The serum-free culture media collected from the human MPM cells Meso1 and Meso2 significantly enhanced expression of the M2 signature molecules including IL-10, TGF-β and CD206 in the human macrophages THP-1, while the culture medium of the human MPM cells H2452 did not show such M2-promoting effects. Analysis of proteins by mass spectrometry and ELISA suggested that Leucine rich α2 glycoprotein 1(LRG1) was a potential candidate. LRG1 time- and dose-dependently increased expression of the M2 signature molecules, confirming its M2-promoting effects. Furthermore, LRG1's M2-promoting effects were reduced by the TGF-β receptor inhibitor SB431542, and LRG1 increased phosphorylation of Smad2, indicating that M2-promoting effects of LRG1 were via the TGF-β receptor/Smad2 signaling pathway. Conclusions: Our results provide a potential M2-promoting new member, LRG1, which contributes to the immune escape of MPM via the TGF-β receptor/Smad2 signaling pathway.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从恶性胸膜间皮瘤细胞中提取的富亮氨酸α2糖蛋白1可促进巨噬细胞M2表型的形成。
背景:巨噬细胞是恶性胸膜间皮瘤(MPM)浸润免疫细胞的主要组成部分,MPM 患者的胸腔积液和组织样本中都存在比例异常高的 M2 巨噬细胞。人们对 MPM 细胞是否会影响 M2 巨噬细胞的形成还知之甚少。在本研究中,我们重点鉴定了具有 M2 促进作用的 MPM 细胞衍生可溶性因子。研究方法收集恶性胸膜间皮瘤细胞的培养基,用质谱分析影响巨噬细胞的可溶性因子。以 TGF-β 受体抑制剂 SB431542 为切入点,通过 qRT-PCR、WB 和免疫荧光等方法探讨其下游作用机制。结果从人MPM细胞Meso1和Meso2中收集的无血清培养基能显著提高人巨噬细胞THP-1中IL-10、TGF-β和CD206等M2标志性分子的表达,而人MPM细胞H2452的培养基则没有这种M2促进作用。质谱法和酶联免疫吸附法对蛋白质的分析表明,富亮氨酸α2糖蛋白1(LRG1)是一种潜在的候选物质。LRG1 可在时间和剂量上依赖性地增加 M2 标志性分子的表达,这证实了它的 M2 促进作用。此外,TGF-β受体抑制剂SB431542降低了LRG1的M2促进作用,LRG1增加了Smad2的磷酸化,表明LRG1的M2促进作用是通过TGF-β受体/Smad2信号通路产生的。结论:我们的研究结果提供了一个潜在的M2促进新成员LRG1,它通过TGF-β受体/Smad2信号通路促进了骨髓瘤的免疫逃逸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Experimental Lung Research
Experimental Lung Research 医学-呼吸系统
CiteScore
3.80
自引率
0.00%
发文量
23
审稿时长
2 months
期刊介绍: Experimental Lung Research publishes original articles in all fields of respiratory tract anatomy, biology, developmental biology, toxicology, and pathology. Emphasis is placed on investigations concerned with molecular, biochemical, and cellular mechanisms of normal function, pathogenesis, and responses to injury. The journal publishes reports on important methodological advances on new experimental modes. Also published are invited reviews on important and timely research advances, as well as proceedings of specialized symposia. Authors can choose to publish gold open access in this journal.
期刊最新文献
Exosomes derived from hypoxic alveolar epithelial cells promote the phenotypic transformation of pulmonary artery smooth muscle cells via the Rap1 pathway Treatment with inhaled aerosolised ethanol reduces viral load and potentiates macrophage responses in an established influenza mouse model Inhibition of GBP5 activates autophagy to alleviate inflammatory response in LPS-induced lung injury in mice Differential changes in expression of inflammatory mRNA and protein after oleic acid-induced acute lung injury CLCA1 exacerbates lung inflammation via p38 MAPK pathway in acute respiratory distress syndrome
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1