Vívian D'Afonseca, Elizabeth Valdés Muñoz, Alan López Leal, Patricio Maximiliano Adrián Suazo Soto, Cristóbal Parra-Cid
{"title":"Implications of the microbiome and metabolic intermediaries produced by bacteria in breast cancer.","authors":"Vívian D'Afonseca, Elizabeth Valdés Muñoz, Alan López Leal, Patricio Maximiliano Adrián Suazo Soto, Cristóbal Parra-Cid","doi":"10.1590/1678-4685-GMB-2023-0316","DOIUrl":null,"url":null,"abstract":"<p><p>The breast microbiome presents a diverse microbial community that could affects health and disease states, in the context of breast cancer. Sequencing technologies have allowed describing the diversity and abundance of microbial communities among individuals. The complex tumoral microenvironment that includes the microbial composition could influence tumor growth. The imbalance of diversity and abundance inside the microbial community, known as dysbiosis plays a crucial role in this context. One the most prevalent bacterial genera described in breast invasive carcinoma are Bacillus, Pseudomonas, Brevibacillus, Mycobacterium, Thermoviga, Acinetobacter, Corynebacterium, Paenibacillus, Ensifer, and Bacteroides. Paenibacills genus shows a relation with patient survival. When the Paenibacills genus increases its abundance in patients with breast cancer, the survival probability decreases. Within this dysbiotic environment, various bacterial metabolites could play a pivotal role in the progression and modulation of breast cancer. Key bacterial metabolites, such as cadaverine, lipopolysaccharides (LPS), and trimethylamine N-oxide (TMAO), have been found to exhibit potential interactions within breast tissue microenvironments. Understanding the intricate relationships between dysbiosis and these metabolites in breast cancer may open new avenues for diagnostic biomarkers and therapeutic targets. Further research is essential to unravel the specific roles and mechanisms of these microbial metabolites in breast cancer progression.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262001/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1590/1678-4685-GMB-2023-0316","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The breast microbiome presents a diverse microbial community that could affects health and disease states, in the context of breast cancer. Sequencing technologies have allowed describing the diversity and abundance of microbial communities among individuals. The complex tumoral microenvironment that includes the microbial composition could influence tumor growth. The imbalance of diversity and abundance inside the microbial community, known as dysbiosis plays a crucial role in this context. One the most prevalent bacterial genera described in breast invasive carcinoma are Bacillus, Pseudomonas, Brevibacillus, Mycobacterium, Thermoviga, Acinetobacter, Corynebacterium, Paenibacillus, Ensifer, and Bacteroides. Paenibacills genus shows a relation with patient survival. When the Paenibacills genus increases its abundance in patients with breast cancer, the survival probability decreases. Within this dysbiotic environment, various bacterial metabolites could play a pivotal role in the progression and modulation of breast cancer. Key bacterial metabolites, such as cadaverine, lipopolysaccharides (LPS), and trimethylamine N-oxide (TMAO), have been found to exhibit potential interactions within breast tissue microenvironments. Understanding the intricate relationships between dysbiosis and these metabolites in breast cancer may open new avenues for diagnostic biomarkers and therapeutic targets. Further research is essential to unravel the specific roles and mechanisms of these microbial metabolites in breast cancer progression.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.