{"title":"Genomic evidence of reproductive isolation among the Semisulcospira snails radiated in the ancient Lake Biwa.","authors":"Kazuma Ueno, Misako Urabe, Katsuki Nakai, Osamu Miura","doi":"10.1093/jeb/voae090","DOIUrl":null,"url":null,"abstract":"<p><p>Determining species boundaries within rapidly evolving species flocks is essential to understanding their evolutionary history but is often difficult to achieve due to the lack of clear diagnostic features. Ancient Lake Biwa harbours endemic snails in the genus Semisulcospira, a species flock with 19 described species. However, their morphological and genetic similarity cast doubt on the validity of their species status and their histories of explosive speciation. To evaluate their species boundaries, we examine patterns of gene flow among the sympatric or parapatric nominal Semisulcospira species in Lake Biwa. The principal component analysis and Bayesian structure analysis based on the genome-wide genotyping dataset demonstrated no gene flow between five pairs of the Semisulcospira species. However, we found the hybrids between the closely related species pair, Semisulcospira decipiens and S. rugosa. Despite the presence of hybrids, these nominal species still formed their own genetic clusters. There are variations in the chromosome numbers among these species, potentially providing an intrinsic barrier to panmictic gene flow. Our study showed complete or partial reproductive isolation among the sympatric or parapatric Semisulcospira species, demonstrating that the Semisulcospira snails are real species assemblages radiated in Lake Biwa. Our study provides significant implications for establishing species boundaries among rapidly evolving freshwater species in ancient lakes.</p>","PeriodicalId":50198,"journal":{"name":"Journal of Evolutionary Biology","volume":" ","pages":"1055-1063"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolutionary Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jeb/voae090","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Determining species boundaries within rapidly evolving species flocks is essential to understanding their evolutionary history but is often difficult to achieve due to the lack of clear diagnostic features. Ancient Lake Biwa harbours endemic snails in the genus Semisulcospira, a species flock with 19 described species. However, their morphological and genetic similarity cast doubt on the validity of their species status and their histories of explosive speciation. To evaluate their species boundaries, we examine patterns of gene flow among the sympatric or parapatric nominal Semisulcospira species in Lake Biwa. The principal component analysis and Bayesian structure analysis based on the genome-wide genotyping dataset demonstrated no gene flow between five pairs of the Semisulcospira species. However, we found the hybrids between the closely related species pair, Semisulcospira decipiens and S. rugosa. Despite the presence of hybrids, these nominal species still formed their own genetic clusters. There are variations in the chromosome numbers among these species, potentially providing an intrinsic barrier to panmictic gene flow. Our study showed complete or partial reproductive isolation among the sympatric or parapatric Semisulcospira species, demonstrating that the Semisulcospira snails are real species assemblages radiated in Lake Biwa. Our study provides significant implications for establishing species boundaries among rapidly evolving freshwater species in ancient lakes.
期刊介绍:
It covers both micro- and macro-evolution of all types of organisms. The aim of the Journal is to integrate perspectives across molecular and microbial evolution, behaviour, genetics, ecology, life histories, development, palaeontology, systematics and morphology.