Multilevel thresholding Aerial image segmentation using comprehensive learning-based Snow ablation optimizer with double attractors

IF 5 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Egyptian Informatics Journal Pub Date : 2024-07-22 DOI:10.1016/j.eij.2024.100500
Mohamed Abd Elaziz , Mohammed A.A. Al-qaness , Rehab Ali Ibrahim , Ahmed A. Ewees , Mansour Shrahili
{"title":"Multilevel thresholding Aerial image segmentation using comprehensive learning-based Snow ablation optimizer with double attractors","authors":"Mohamed Abd Elaziz ,&nbsp;Mohammed A.A. Al-qaness ,&nbsp;Rehab Ali Ibrahim ,&nbsp;Ahmed A. Ewees ,&nbsp;Mansour Shrahili","doi":"10.1016/j.eij.2024.100500","DOIUrl":null,"url":null,"abstract":"<div><p>Aerial photography is a remote sensing technique used for target detection, enabling both qualitative and quantitative analysis. The segmentation process is considered one of the most important processes to improve the analysis of Aerial images. In this study, we introduce an alternative multilevel threshold image segmentation based on a modified Snow ablation optimizer (SAO) algorithm. This modification is conducted using the strengths of Comprehensive learning and Double attractors which aims to enhance the exploration and exploitation abilities of the SAO during the process of discovering the optimal threshold levels that are used to segment the Aerial photography image. To validate the quality of the modified version of SAO, named DCSAO, a set of experimental series is conducted using the CEC2022 benchmark function and sixteen Aerial images at different threshold levels. In addition, we compared the results of DCSAO with different well-known Metaheuristic techniques. The results show the superior performance of DCSAO in comparison to other algorithms according to the performance metrics.</p></div>","PeriodicalId":56010,"journal":{"name":"Egyptian Informatics Journal","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S111086652400063X/pdfft?md5=ac54158e3b264721813ec98c7c4add6f&pid=1-s2.0-S111086652400063X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Informatics Journal","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S111086652400063X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Aerial photography is a remote sensing technique used for target detection, enabling both qualitative and quantitative analysis. The segmentation process is considered one of the most important processes to improve the analysis of Aerial images. In this study, we introduce an alternative multilevel threshold image segmentation based on a modified Snow ablation optimizer (SAO) algorithm. This modification is conducted using the strengths of Comprehensive learning and Double attractors which aims to enhance the exploration and exploitation abilities of the SAO during the process of discovering the optimal threshold levels that are used to segment the Aerial photography image. To validate the quality of the modified version of SAO, named DCSAO, a set of experimental series is conducted using the CEC2022 benchmark function and sixteen Aerial images at different threshold levels. In addition, we compared the results of DCSAO with different well-known Metaheuristic techniques. The results show the superior performance of DCSAO in comparison to other algorithms according to the performance metrics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用基于综合学习的双吸引子雪域消融优化器进行多级阈值航空图像分割
航空摄影是一种用于目标探测的遥感技术,可进行定性和定量分析。分割过程被认为是改进航空图像分析的最重要过程之一。在本研究中,我们介绍了一种基于改进的雪消融优化算法(SAO)的多级阈值图像分割方法。这一修改利用了综合学习和双吸引子的优势,旨在提高 SAO 在发现用于分割航空摄影图像的最佳阈值水平过程中的探索和利用能力。为了验证改进版 SAO(DCSAO)的质量,我们使用 CEC2022 基准函数和 16 幅不同阈值水平的航空摄影图像进行了一系列实验。此外,我们还将 DCSAO 的结果与不同的著名元搜索技术进行了比较。结果表明,根据性能指标,DCSAO 与其他算法相比具有更优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Egyptian Informatics Journal
Egyptian Informatics Journal Decision Sciences-Management Science and Operations Research
CiteScore
11.10
自引率
1.90%
发文量
59
审稿时长
110 days
期刊介绍: The Egyptian Informatics Journal is published by the Faculty of Computers and Artificial Intelligence, Cairo University. This Journal provides a forum for the state-of-the-art research and development in the fields of computing, including computer sciences, information technologies, information systems, operations research and decision support. Innovative and not-previously-published work in subjects covered by the Journal is encouraged to be submitted, whether from academic, research or commercial sources.
期刊最新文献
HD-MVCNN: High-density ECG signal based diabetic prediction and classification using multi-view convolutional neural network A hybrid encryption algorithm based approach for secure privacy protection of big data in hospitals A new probabilistic linguistic decision-making process based on PL-BWM and improved three-way TODIM methods Interval valued inventory model with different payment strategies for green products under interval valued Grey Wolf optimizer Algorithm fitness function Intelligent SDN to enhance security in IoT networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1