Numerical analysis of the stochastic FitzHugh–Nagumo model driven by multiplicative noise based on the spectral Galerkin method

IF 1.3 Q2 MATHEMATICS, APPLIED Results in Applied Mathematics Pub Date : 2024-07-21 DOI:10.1016/j.rinam.2024.100477
Rushuang Yang , Huanrong Li
{"title":"Numerical analysis of the stochastic FitzHugh–Nagumo model driven by multiplicative noise based on the spectral Galerkin method","authors":"Rushuang Yang ,&nbsp;Huanrong Li","doi":"10.1016/j.rinam.2024.100477","DOIUrl":null,"url":null,"abstract":"<div><p>The stochastic FitzHugh–Nagumo (FHN) neural information transduction model has been widely used in different fields, but there are few numerical studies on this model. In this paper, the stochastic FHN model driven by multiplicative noise is studied based on the spectral Galerkin method. The model is firstly discreted by semi-implicit Euler–Maruyama scheme in time and spectral Galerkin method in space. The error estimation and convergence order are then analyzed. Finally, the one-dimensional and two-dimensional stochastic FHN models are numerically calculated and the convergence order is verified. Moreover, this study promotes the understanding of the information transmission law of neural information transmission model under the influence of stochastic factors.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"23 ","pages":"Article 100477"},"PeriodicalIF":1.3000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000475/pdfft?md5=953719a9089f7a91744ddf3bfd2f302c&pid=1-s2.0-S2590037424000475-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The stochastic FitzHugh–Nagumo (FHN) neural information transduction model has been widely used in different fields, but there are few numerical studies on this model. In this paper, the stochastic FHN model driven by multiplicative noise is studied based on the spectral Galerkin method. The model is firstly discreted by semi-implicit Euler–Maruyama scheme in time and spectral Galerkin method in space. The error estimation and convergence order are then analyzed. Finally, the one-dimensional and two-dimensional stochastic FHN models are numerically calculated and the convergence order is verified. Moreover, this study promotes the understanding of the information transmission law of neural information transmission model under the influence of stochastic factors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于频谱伽勒金方法的乘法噪声驱动随机菲茨休-纳古莫模型数值分析
随机菲茨休-纳古莫(FHN)神经信息传导模型已被广泛应用于不同领域,但有关该模型的数值研究却很少。本文基于谱 Galerkin 方法研究了乘法噪声驱动的随机 FHN 模型。首先在时间上采用半隐式 Euler-Maruyama 方案,在空间上采用谱 Galerkin 方法对模型进行离散计算。然后分析了误差估计和收敛阶次。最后,对一维和二维随机 FHN 模型进行了数值计算,并验证了收敛阶次。此外,本研究还促进了对随机因素影响下神经信息传输模型的信息传输规律的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
期刊最新文献
General conservative sixth- and eighth-order compact finite difference schemes for the N-coupled Schrödinger-Boussinesq equations Optimal L2 error estimates of the decoupled, mass and charge-conservative mixed FEM for the two-phase inductionless MHD model Carleman linearization of differential-algebraic equations systems Analytical and numerical investigation of wave resonance over rectangular basin with submerged triangular breakwaters Optimal error estimates of BDF2 finite element method for the two-dimensional time-dependent Schrödinger equation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1