{"title":"Recent developments in functional organic polymer coatings for biomedical applications in implanted devices","authors":"Yinuo Yang, Yiran Jia, Yanran Zhao, Haimang Wang, Hongyu Zhang","doi":"10.1007/s40544-023-0850-7","DOIUrl":null,"url":null,"abstract":"<p>Organic polymer coatings have been commonly used in biomedical field, which play an important role in achieving biological antifouling, drug delivery, and bacteriostasis. With the continuous development of polymer science, organic polymer coatings can be designed with complex and advanced functions, which is conducive to the construction of biomedical materials with different performances. According to different physical and chemical properties of materials, biomedical organic polymer coating materials are classified into zwitterionic polymers, non-ionic polymers, and biomacromolecules. The strategies of combining coatings with substrates include physical adsorption, chemical grafting, and self-adhesion. Though the coating materials and construction methods are different, many biomedical polymer coatings have been developed to achieve excellent performances, i.e., enhanced lubrication, anti-inflammation, antifouling, antibacterial, drug release, anti-encrustation, anti-thrombosis, etc. Consequently, a large number of biomedical polymer coatings have been used in artificial lungs, ureteral stent, vascular flow diverter, and artificial joints. In this review, we summarize different types, properties, construction methods, biological functions, and clinical applications of biomedical organic polymer coatings, and prospect future direction for development of organic polymer coatings in biomedical field. It is anticipated that this review can be useful for the design and synthesis of functional organic polymer coatings with various biomedical purposes.\n</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"29 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40544-023-0850-7","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Organic polymer coatings have been commonly used in biomedical field, which play an important role in achieving biological antifouling, drug delivery, and bacteriostasis. With the continuous development of polymer science, organic polymer coatings can be designed with complex and advanced functions, which is conducive to the construction of biomedical materials with different performances. According to different physical and chemical properties of materials, biomedical organic polymer coating materials are classified into zwitterionic polymers, non-ionic polymers, and biomacromolecules. The strategies of combining coatings with substrates include physical adsorption, chemical grafting, and self-adhesion. Though the coating materials and construction methods are different, many biomedical polymer coatings have been developed to achieve excellent performances, i.e., enhanced lubrication, anti-inflammation, antifouling, antibacterial, drug release, anti-encrustation, anti-thrombosis, etc. Consequently, a large number of biomedical polymer coatings have been used in artificial lungs, ureteral stent, vascular flow diverter, and artificial joints. In this review, we summarize different types, properties, construction methods, biological functions, and clinical applications of biomedical organic polymer coatings, and prospect future direction for development of organic polymer coatings in biomedical field. It is anticipated that this review can be useful for the design and synthesis of functional organic polymer coatings with various biomedical purposes.
期刊介绍:
Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as:
Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc.
Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc.
Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc.
Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc.
Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc.
Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.