The Stability of Robustness for Conic Linear Programs with Uncertain Data

IF 1.6 3区 数学 Q2 MATHEMATICS, APPLIED Journal of Optimization Theory and Applications Pub Date : 2024-07-21 DOI:10.1007/s10957-024-02492-5
Miguel A. Goberna, Vaithilingam Jeyakumar, Guoyin Li
{"title":"The Stability of Robustness for Conic Linear Programs with Uncertain Data","authors":"Miguel A. Goberna, Vaithilingam Jeyakumar, Guoyin Li","doi":"10.1007/s10957-024-02492-5","DOIUrl":null,"url":null,"abstract":"<p>The robust counterpart of a given conic linear program with uncertain data in the constraints is defined as the robust conic linear program that arises from replacing the nominal feasible set by the robust feasible set of points that remain feasible for any possible perturbation of the data within an uncertainty set. Any minor changes in the size of the uncertainty set can result in significant changes, for instance, in the robust feasible set, robust optimal value and the robust optimal set. The concept of quantifying the extent of these deviations is referred to as the <i>stability of robustness</i>. This paper establishes conditions for the stability of robustness under which minor changes in the size of the uncertainty sets lead to only minor changes in the robust feasible set of a given linear program with cone constraints and ball uncertainty sets.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"36 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02492-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The robust counterpart of a given conic linear program with uncertain data in the constraints is defined as the robust conic linear program that arises from replacing the nominal feasible set by the robust feasible set of points that remain feasible for any possible perturbation of the data within an uncertainty set. Any minor changes in the size of the uncertainty set can result in significant changes, for instance, in the robust feasible set, robust optimal value and the robust optimal set. The concept of quantifying the extent of these deviations is referred to as the stability of robustness. This paper establishes conditions for the stability of robustness under which minor changes in the size of the uncertainty sets lead to only minor changes in the robust feasible set of a given linear program with cone constraints and ball uncertainty sets.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有不确定数据的圆锥线性规划的稳健性
在约束条件中包含不确定数据的给定圆锥线性程序的稳健对应程序定义为稳健圆锥线性程序,它是用稳健可行点集代替标称可行集而产生的,对于不确定集内任何可能的数据扰动都是可行的。不确定性集大小的任何微小变化都可能导致稳健可行集、稳健最优值和稳健最优集等发生重大变化。量化这些偏差程度的概念被称为稳健性的稳定性。本文建立了稳健性稳定性的条件,在这些条件下,不确定性集大小的微小变化只会导致具有锥形约束和球形不确定性集的给定线性规划的稳健可行集发生微小变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
149
审稿时长
9.9 months
期刊介绍: The Journal of Optimization Theory and Applications is devoted to the publication of carefully selected regular papers, invited papers, survey papers, technical notes, book notices, and forums that cover mathematical optimization techniques and their applications to science and engineering. Typical theoretical areas include linear, nonlinear, mathematical, and dynamic programming. Among the areas of application covered are mathematical economics, mathematical physics and biology, and aerospace, chemical, civil, electrical, and mechanical engineering.
期刊最新文献
Effects of patient education on the oral behavior of patients with temporomandibular degenerative joint disease: a prospective case series study. On Tractable Convex Relaxations of Standard Quadratic Optimization Problems under Sparsity Constraints. Simultaneous Diagonalization Under Weak Regularity and a Characterization Seeking Consensus on Subspaces in Federated Principal Component Analysis A Multilevel Method for Self-Concordant Minimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1