An Augmented Lagrangian Method for State Constrained Linear Parabolic Optimal Control Problems

IF 1.6 3区 数学 Q2 MATHEMATICS, APPLIED Journal of Optimization Theory and Applications Pub Date : 2024-07-19 DOI:10.1007/s10957-024-02494-3
Hailing Wang, Changjun Yu, Yongcun Song
{"title":"An Augmented Lagrangian Method for State Constrained Linear Parabolic Optimal Control Problems","authors":"Hailing Wang, Changjun Yu, Yongcun Song","doi":"10.1007/s10957-024-02494-3","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider a class of state constrained linear parabolic optimal control problems. Instead of treating the inequality state constraints directly, we reformulate the problem as an equality-constrained optimization problem, and then apply the augmented Lagrangian method (ALM) to solve it. We prove the convergence of the ALM without any existence or regularity assumptions on the corresponding Lagrange multipliers, which is an essential complement to the classical theoretical results for the ALM because restrictive regularity assumptions are usually required to guarantee the existence of the Lagrange multipliers associated with the state constraints. In addition, under an appropriate choice of penalty parameter sequence, we can obtain a super-linear non-ergodic convergence rate for the ALM. Computationally, we apply a semi-smooth Newton (SSN) method to solve the ALM subproblems and design an efficient preconditioned conjugate gradient method for solving the Newton systems. Some numerical results are given to illustrate the effectiveness and efficiency of our algorithm.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"64 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02494-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider a class of state constrained linear parabolic optimal control problems. Instead of treating the inequality state constraints directly, we reformulate the problem as an equality-constrained optimization problem, and then apply the augmented Lagrangian method (ALM) to solve it. We prove the convergence of the ALM without any existence or regularity assumptions on the corresponding Lagrange multipliers, which is an essential complement to the classical theoretical results for the ALM because restrictive regularity assumptions are usually required to guarantee the existence of the Lagrange multipliers associated with the state constraints. In addition, under an appropriate choice of penalty parameter sequence, we can obtain a super-linear non-ergodic convergence rate for the ALM. Computationally, we apply a semi-smooth Newton (SSN) method to solve the ALM subproblems and design an efficient preconditioned conjugate gradient method for solving the Newton systems. Some numerical results are given to illustrate the effectiveness and efficiency of our algorithm.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
状态受限线性抛物线优化控制问题的增量拉格朗日法
本文考虑了一类状态约束线性抛物线最优控制问题。我们没有直接处理不平等状态约束,而是将问题重新表述为平等约束优化问题,然后应用增强拉格朗日法(ALM)求解。我们证明了 ALM 的收敛性,而无需对相应的拉格朗日乘数做任何存在性或正则性假设,这是对 ALM 经典理论结果的重要补充,因为要保证与状态约束相关的拉格朗日乘数的存在,通常需要限制性的正则性假设。此外,在适当选择惩罚参数序列的情况下,我们可以获得 ALM 的超线性非啮合收敛率。在计算上,我们采用半光滑牛顿(SSN)方法来求解 ALM 子问题,并设计了一种高效的预条件共轭梯度法来求解牛顿系统。我们给出了一些数值结果,以说明我们算法的有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
149
审稿时长
9.9 months
期刊介绍: The Journal of Optimization Theory and Applications is devoted to the publication of carefully selected regular papers, invited papers, survey papers, technical notes, book notices, and forums that cover mathematical optimization techniques and their applications to science and engineering. Typical theoretical areas include linear, nonlinear, mathematical, and dynamic programming. Among the areas of application covered are mathematical economics, mathematical physics and biology, and aerospace, chemical, civil, electrical, and mechanical engineering.
期刊最新文献
Simultaneous Diagonalization Under Weak Regularity and a Characterization Seeking Consensus on Subspaces in Federated Principal Component Analysis A Multilevel Method for Self-Concordant Minimization A Descent Method for Nonsmooth Multiobjective Optimization in Hilbert Spaces Expected Residual Minimization Formulation for Stochastic Absolute Value Equations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1