R Hassaine, F Gauchet, F Iacob, J Zs Mezei, E Roueff, J Tennyson and I F Schneider
{"title":"Dissociative recombination of NS+ in collision with slow electrons","authors":"R Hassaine, F Gauchet, F Iacob, J Zs Mezei, E Roueff, J Tennyson and I F Schneider","doi":"10.1088/1361-6455/ad5e20","DOIUrl":null,"url":null,"abstract":"Cross sections and rate coefficients for the dissociative recombination (DR) of the NS+ ion induced by collisions with low-energy electrons are reported for temperatures between 10 and 1000 K, relevant to a large range of interstellar cloud temperatures. Uncertainties are discussed for these rates. Comparisons are made with DR rates for the isovalent NO+ molecular ion which are found to be much faster. The present findings lead to a moderate dissociative reaction rate coefficient, smaller by a factor of 2 than the current estimates reported in the different kinetic databases for a temperature of 10 K. We consider that our rate coefficients obtained through multichannel quantum defect theory for NS+ are likely to be better than those displayed in the different kinetic databases.","PeriodicalId":16826,"journal":{"name":"Journal of Physics B: Atomic, Molecular and Optical Physics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics B: Atomic, Molecular and Optical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6455/ad5e20","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Cross sections and rate coefficients for the dissociative recombination (DR) of the NS+ ion induced by collisions with low-energy electrons are reported for temperatures between 10 and 1000 K, relevant to a large range of interstellar cloud temperatures. Uncertainties are discussed for these rates. Comparisons are made with DR rates for the isovalent NO+ molecular ion which are found to be much faster. The present findings lead to a moderate dissociative reaction rate coefficient, smaller by a factor of 2 than the current estimates reported in the different kinetic databases for a temperature of 10 K. We consider that our rate coefficients obtained through multichannel quantum defect theory for NS+ are likely to be better than those displayed in the different kinetic databases.
期刊介绍:
Published twice-monthly (24 issues per year), Journal of Physics B: Atomic, Molecular and Optical Physics covers the study of atoms, ions, molecules and clusters, and their structure and interactions with particles, photons or fields. The journal also publishes articles dealing with those aspects of spectroscopy, quantum optics and non-linear optics, laser physics, astrophysics, plasma physics, chemical physics, optical cooling and trapping and other investigations where the objects of study are the elementary atomic, ionic or molecular properties of processes.