Surface‐Reengineering of BNNs@Hydrocarbon Polymer Composites for Ultra‐Low Dielectric Constant for High‐Frequency Applications

IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY ChemNanoMat Pub Date : 2024-07-20 DOI:10.1002/cnma.202400181
MD ZAHIDUL ISLAM, Hridam Deb, MD Khalid Hasan, Azim Abdullaev, Kun Peng, Shuaida Shi, Yubing Dong, Yaqin Fu
{"title":"Surface‐Reengineering of BNNs@Hydrocarbon Polymer Composites for Ultra‐Low Dielectric Constant for High‐Frequency Applications","authors":"MD ZAHIDUL ISLAM, Hridam Deb, MD Khalid Hasan, Azim Abdullaev, Kun Peng, Shuaida Shi, Yubing Dong, Yaqin Fu","doi":"10.1002/cnma.202400181","DOIUrl":null,"url":null,"abstract":"This research investigates the synthesis and evaluation of cyclic olefin copolymer (COC) composites with surface‐engineered boron nitride nanosheets (BNNs) at various concentrations. The study focuses on the impact of Cetyltrimethylammonium bromide (CTAB) on BNNs' surface functionalization to improve their dispersion within the COC matrix, including its dielectric behavior, dielectric breakdown strength, thermal management capabilities, hygroscopic properties, and mechanical robustness. The methodological approach adopted for the fabrication of COC/BNNs hybrid composites commenced with the synthesis of BNNs, surface functionalization of BNNs, in‐situ mixing and hot‐press. This step aimed to enhance compatibility and adhesion between BNNs and the COC matrix, facilitating more homogeneous nanofiller dispersion. The investigative scope of this study encompassed a rigorous evaluation of the resultant composites, with a particular emphasis on their dielectric properties. The dielectric constant (ε') and loss tangent (δ) were measured at a frequency of 10 GHz, revealing an ultra‐low dielectric constant of 1.28, an exceptionally minimal loss tangent of 0.000146, a remarkable 327% (In‐plane) & 129% (axial) increase of thermal conductivity, significant improvement of dielectric breakdown strength up to 88.4 mV/mm, and low water absorptions observed. These results indicate the potential of COC/BNNs composites for high‐frequency electronic packaging applications requiring low dielectric constants.","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/cnma.202400181","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This research investigates the synthesis and evaluation of cyclic olefin copolymer (COC) composites with surface‐engineered boron nitride nanosheets (BNNs) at various concentrations. The study focuses on the impact of Cetyltrimethylammonium bromide (CTAB) on BNNs' surface functionalization to improve their dispersion within the COC matrix, including its dielectric behavior, dielectric breakdown strength, thermal management capabilities, hygroscopic properties, and mechanical robustness. The methodological approach adopted for the fabrication of COC/BNNs hybrid composites commenced with the synthesis of BNNs, surface functionalization of BNNs, in‐situ mixing and hot‐press. This step aimed to enhance compatibility and adhesion between BNNs and the COC matrix, facilitating more homogeneous nanofiller dispersion. The investigative scope of this study encompassed a rigorous evaluation of the resultant composites, with a particular emphasis on their dielectric properties. The dielectric constant (ε') and loss tangent (δ) were measured at a frequency of 10 GHz, revealing an ultra‐low dielectric constant of 1.28, an exceptionally minimal loss tangent of 0.000146, a remarkable 327% (In‐plane) & 129% (axial) increase of thermal conductivity, significant improvement of dielectric breakdown strength up to 88.4 mV/mm, and low water absorptions observed. These results indicate the potential of COC/BNNs composites for high‐frequency electronic packaging applications requiring low dielectric constants.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重新设计 BNNs@Hydrocarbon 聚合物的表面,为高频应用提供超低介电常数
本研究调查了不同浓度的环烯烃共聚物(COC)与表面工程氮化硼纳米片(BNNs)复合材料的合成与评估。研究重点是十六烷基三甲基溴化铵(CTAB)对氮化硼表面功能化的影响,以改善氮化硼在 COC 基体中的分散性,包括其介电行为、介电损耗强度、热管理能力、吸湿性能和机械坚固性。COC/BNNs 混合复合材料的制备方法从合成 BNNs、BNNs 表面功能化、原位混合和热压开始。这一步骤旨在增强 BNNs 与 COC 基体之间的兼容性和粘附性,促进纳米填料的均匀分散。本研究的调查范围包括对所产生的复合材料进行严格评估,重点是其介电性能。在 10 GHz 频率下测量了介电常数 (ε')和损耗角正切 (δ),结果显示介电常数超低,为 1.28,损耗角正切极小,为 0.000146,热导率显著提高了 327%(面内)和 129%(轴向),介电击穿强度显著提高,达到 88.4 mV/mm,吸水率也很低。这些结果表明,COC/BNNs 复合材料在要求低介电常数的高频电子封装应用中具有潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemNanoMat
ChemNanoMat Energy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍: ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.
期刊最新文献
The Application of Metallic Sn in Sn‐Based Perovskite Solar Cells High Efficiency and Total Decomposition of Water by Pt−CoFe@CC Catalyst Loaded with a Small Amount of Pt Fabrication of ripple structured silicon carbide (SiC) films for nano‐grating and solar cell applications RICE STRAW BIOCHAR AS AN EFFECTIVE SUPPORT FOR Pd NANOPARTICLES IN ETHANOL ELECTRO‐OXIDATION REACTION IN ALKALINE CONDITION Front Cover: Superhydrophilic Densely-Packed Gecko-Like Structures by Soft-Template Electropolymerization (ChemNanoMat 9/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1