Interaction effects on the itinerant ferromagnetism phase transition

Jordi Pera, Joaquim Casulleras, Jordi Boronat
{"title":"Interaction effects on the itinerant ferromagnetism phase transition","authors":"Jordi Pera, Joaquim Casulleras, Jordi Boronat","doi":"arxiv-2407.14137","DOIUrl":null,"url":null,"abstract":"Itinerant ferromagnetism is one of the most studied quantum phase\ntransitions, the transition point and the nature of this phase transition being\nwidely discussed. In dilute Fermi liquids, this analysis has been carried out\nup to second-order in the gas parameter, where the results for any spin\ndegeneracy are universal in terms of only the s-wave scattering length $a_0$.\nWe extend this analysis to third-order where energies depend, not only on\n$a_0$, but also on the s-wave effective range $r_0$ and the p-wave scattering\nlength $a_1$. The introduction in the theory of these new parameters changes\nthe transition point, with respect to the second-order estimation, and also can\nmodify the nature of the phase transition itself. We analyze these interaction\neffects on the phase transition for different spin values. The emerging phase\ndiagram shows that the type of ferromagnetic transition changes dramatically as\na function of $r_0$ and $a_1$ and, importantly, that this classification is not\nsolely determined by the spin value, as happens at second order.","PeriodicalId":501521,"journal":{"name":"arXiv - PHYS - Quantum Gases","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Quantum Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.14137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Itinerant ferromagnetism is one of the most studied quantum phase transitions, the transition point and the nature of this phase transition being widely discussed. In dilute Fermi liquids, this analysis has been carried out up to second-order in the gas parameter, where the results for any spin degeneracy are universal in terms of only the s-wave scattering length $a_0$. We extend this analysis to third-order where energies depend, not only on $a_0$, but also on the s-wave effective range $r_0$ and the p-wave scattering length $a_1$. The introduction in the theory of these new parameters changes the transition point, with respect to the second-order estimation, and also can modify the nature of the phase transition itself. We analyze these interaction effects on the phase transition for different spin values. The emerging phase diagram shows that the type of ferromagnetic transition changes dramatically as a function of $r_0$ and $a_1$ and, importantly, that this classification is not solely determined by the spin value, as happens at second order.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
巡回铁磁相变的相互作用效应
巡回铁磁性是研究最多的量子相变之一,这种相变的转变点和性质被广泛讨论。在稀费米液体中,这种分析一直进行到气体参数的二阶,其中任何自旋互斥性的结果都是通用的,只取决于 s 波散射长度 $a_0$。在理论中引入这些新参数会改变相变点的二阶估计,也会改变相变本身的性质。我们分析了这些相互作用对不同自旋值相变的影响。新出现的相位图显示,铁磁转变类型作为 $r_0$ 和 $a_1$ 的函数发生了巨大变化,而且重要的是,这种分类并不像二阶时那样完全由自旋值决定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Boundary-localized many-body bound states in the continuum Correlations of the Current Density in Many-Body Landau Level States Measurement resolution enhanced coherence for lattice fermions Finite temperature stability of quantized vortex structures in rotating Bose-Einstein condensates via complex Langevin simulation Josephson effect and self-trapping in helicoidal spin-orbit coupled Bose-Einstein condensates with optical lattices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1