Sign‐flip inference for spatial regression with differential regularisation

Pub Date : 2024-07-17 DOI:10.1002/sta4.711
Michele Cavazzutti, Eleonora Arnone, Federico Ferraccioli, Cristina Galimberti, Livio Finos, Laura M. Sangalli
{"title":"Sign‐flip inference for spatial regression with differential regularisation","authors":"Michele Cavazzutti, Eleonora Arnone, Federico Ferraccioli, Cristina Galimberti, Livio Finos, Laura M. Sangalli","doi":"10.1002/sta4.711","DOIUrl":null,"url":null,"abstract":"SummaryWe address the problem of performing inference on the linear and nonlinear terms of a semiparametric spatial regression model with differential regularisation. For the linear term, we propose a new resampling procedure, based on (partial) sign‐flipping of an appropriate transformation of the residuals of the model. The proposed resampling scheme can mitigate the bias effect induced by the differential regularisation. We prove that the proposed test is asymptotically exact. Moreover, we show, by simulation studies, that it enjoys very good control of Type‐I error also in small sample scenarios, differently from parametric alternatives. Additionally, we show that the proposed test has higher power with respect than recently proposed nonparametric tests on the linear term of semiparametric regression models with differential regularisation. Concerning the nonlinear term, we develop three different inference approaches: a parametric one and two nonparametric alternatives. The nonparametric tests are based on a sign‐flip approach. One of these is proved to be asymptotically exact, while the other is proved to be exact also for finite samples. Simulation studies highlight the good control of Type‐I error of the nonparametric approaches with respect the parametric test, while retaining high power.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/sta4.711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

SummaryWe address the problem of performing inference on the linear and nonlinear terms of a semiparametric spatial regression model with differential regularisation. For the linear term, we propose a new resampling procedure, based on (partial) sign‐flipping of an appropriate transformation of the residuals of the model. The proposed resampling scheme can mitigate the bias effect induced by the differential regularisation. We prove that the proposed test is asymptotically exact. Moreover, we show, by simulation studies, that it enjoys very good control of Type‐I error also in small sample scenarios, differently from parametric alternatives. Additionally, we show that the proposed test has higher power with respect than recently proposed nonparametric tests on the linear term of semiparametric regression models with differential regularisation. Concerning the nonlinear term, we develop three different inference approaches: a parametric one and two nonparametric alternatives. The nonparametric tests are based on a sign‐flip approach. One of these is proved to be asymptotically exact, while the other is proved to be exact also for finite samples. Simulation studies highlight the good control of Type‐I error of the nonparametric approaches with respect the parametric test, while retaining high power.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
利用微分正则化进行空间回归的符号翻转推理
摘要我们要解决的问题是对具有微分正则化的半参数空间回归模型的线性项和非线性项进行推断。对于线性项,我们提出了一种新的重采样程序,该程序基于模型残差适当变换的(部分)符号翻转。所提出的重采样方案可以减轻微分正则化引起的偏差效应。我们证明了所提出的检验方法是渐近精确的。此外,我们还通过模拟研究表明,与参数法不同,该方法在小样本情况下也能很好地控制 I 类误差。此外,我们还证明,与最近提出的对具有微分正则化的半参数回归模型线性项的非参数检验相比,所提出的检验具有更高的功率。关于非线性项,我们开发了三种不同的推断方法:一种参数方法和两种非参数方法。非参数检验基于符号翻转方法。其中一种被证明是渐近精确的,而另一种则被证明在有限样本中也是精确的。模拟研究突出表明,相对于参数检验,非参数方法能很好地控制第一类误差,同时保持较高的功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1