{"title":"Non-linear Collision-Induced Breakage Equation: Finite Volume and Semi-Analytical Methods","authors":"Sanjiv Kumar Bariwal, Saddam Hussain, Rajesh Kumar","doi":"10.1007/s10440-024-00671-0","DOIUrl":null,"url":null,"abstract":"<div><p>The non-linear collision-induced breakage equation has significant applications in particulate processes. Two semi-analytical techniques, namely homotopy analysis method (HAM) and accelerated homotopy perturbation method (AHPM) are investigated along with the well-known numerical scheme finite volume method (FVM) to comprehend the dynamical behavior of the non-linear system, i.e., the concentration function, the total number, total mass and energy dissipation of the particles in the system. These semi-analytical methods provide approximate analytical solutions by truncating the infinite series form. The theoretical convergence analyses of the series solutions of HAM and AHPM are discussed under some assumptions on the collisional kernels. In addition, the error estimations of the truncated solutions of both methods equip the maximum absolute error bound. Moreover, HAM simulations are computationally costly compared to AHPM because of an additional auxiliary parameter. To justify the applicability and accuracy of these series methods, approximated solutions are compared with the findings of FVM and analytical solutions considering three physical problems.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"192 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-024-00671-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The non-linear collision-induced breakage equation has significant applications in particulate processes. Two semi-analytical techniques, namely homotopy analysis method (HAM) and accelerated homotopy perturbation method (AHPM) are investigated along with the well-known numerical scheme finite volume method (FVM) to comprehend the dynamical behavior of the non-linear system, i.e., the concentration function, the total number, total mass and energy dissipation of the particles in the system. These semi-analytical methods provide approximate analytical solutions by truncating the infinite series form. The theoretical convergence analyses of the series solutions of HAM and AHPM are discussed under some assumptions on the collisional kernels. In addition, the error estimations of the truncated solutions of both methods equip the maximum absolute error bound. Moreover, HAM simulations are computationally costly compared to AHPM because of an additional auxiliary parameter. To justify the applicability and accuracy of these series methods, approximated solutions are compared with the findings of FVM and analytical solutions considering three physical problems.
期刊介绍:
Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods.
Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.