Perturbed pediatric serum metabolome in mild and severe dengue disease

Paul S Soma, Rebekah C Gullberg, Barbara Graham, M Nurul Islam, Angel Balmaseda, Carol D Blair, Barry Beaty, John T Belisle, Eva Harris, Rushika Perera
{"title":"Perturbed pediatric serum metabolome in mild and severe dengue disease","authors":"Paul S Soma, Rebekah C Gullberg, Barbara Graham, M Nurul Islam, Angel Balmaseda, Carol D Blair, Barry Beaty, John T Belisle, Eva Harris, Rushika Perera","doi":"10.1101/2024.07.16.603788","DOIUrl":null,"url":null,"abstract":"Dengue viruses (DENVs) are the most prevalent arboviruses affecting humans. Four billion people are at risk of infection and this burden is rapidly increasing due to geographic expansion of the mosquito vector. Infection with any of the four serotypes of DENV can result in a self-limiting disease but debilitating febrile illness (DF), and some infections progress to severe disease with manifestations such as hemorrhage and shock. DENV infection drives the metabolic state of host cells for viral benefit and induces a host-immune response that has metabolic implications that link to disease. In this study, a dynamic metabolic response to DENV infection and disease was measured in 535 pediatric patient sera using liquid chromatography-mass spectrometry. The metabolome was interrogated to discover biochemical pathways and identify key metabolites perturbed in severe dengue disease. A biomarker panel of thirty-two perturbed metabolites was utilized to classify DF, and severe dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) with high sensitivity and specificity equating to a balanced accuracy of 96.9%. Some metabolites that were structurally confirmed here belong to important biochemical pathways of omega-3 and omega-6 fatty acids, sphingolipids, purines, and tryptophan metabolism. A previously reported trend between serotonin and platelets in DHF patients has been expanded upon here to reveal a major depletion of serotonin, but not platelets, in DSS patients. This study differentiated and classified DF and DHF/DSS using a serum metabolic biomarker panel based on perturbed biochemical pathways that have potential implications for severe dengue disease.","PeriodicalId":501213,"journal":{"name":"bioRxiv - Systems Biology","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.16.603788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dengue viruses (DENVs) are the most prevalent arboviruses affecting humans. Four billion people are at risk of infection and this burden is rapidly increasing due to geographic expansion of the mosquito vector. Infection with any of the four serotypes of DENV can result in a self-limiting disease but debilitating febrile illness (DF), and some infections progress to severe disease with manifestations such as hemorrhage and shock. DENV infection drives the metabolic state of host cells for viral benefit and induces a host-immune response that has metabolic implications that link to disease. In this study, a dynamic metabolic response to DENV infection and disease was measured in 535 pediatric patient sera using liquid chromatography-mass spectrometry. The metabolome was interrogated to discover biochemical pathways and identify key metabolites perturbed in severe dengue disease. A biomarker panel of thirty-two perturbed metabolites was utilized to classify DF, and severe dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) with high sensitivity and specificity equating to a balanced accuracy of 96.9%. Some metabolites that were structurally confirmed here belong to important biochemical pathways of omega-3 and omega-6 fatty acids, sphingolipids, purines, and tryptophan metabolism. A previously reported trend between serotonin and platelets in DHF patients has been expanded upon here to reveal a major depletion of serotonin, but not platelets, in DSS patients. This study differentiated and classified DF and DHF/DSS using a serum metabolic biomarker panel based on perturbed biochemical pathways that have potential implications for severe dengue disease.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
轻度和重度登革热病儿科血清代谢组紊乱
登革病毒(DENVs)是影响人类最普遍的虫媒病毒。有 40 亿人面临感染风险,而且由于蚊媒的地理扩张,这一负担正在迅速增加。感染 DENV 的四种血清型中的任何一种都可能导致自限性疾病,但会使发热性疾病 (DF) 变得虚弱,有些感染会发展为严重疾病,表现为出血和休克。DENV 感染会驱动宿主细胞的新陈代谢状态以获得病毒利益,并诱发宿主免疫反应,这种反应对新陈代谢的影响与疾病相关。本研究使用液相色谱-质谱法测量了535名儿科患者血清中对DENV感染和疾病的动态代谢反应。通过对代谢组的研究,发现了生化途径,并确定了在严重登革热病中受到干扰的关键代谢物。由 32 个受干扰的代谢物组成的生物标志物小组被用来对登革热、严重登革出血热和登革休克综合征进行分类,其灵敏度和特异性都很高,准确率达到 96.9%。经结构确认的一些代谢物属于欧米伽-3 和欧米伽-6 脂肪酸、鞘脂、嘌呤和色氨酸代谢的重要生化途径。以前曾报道过 DHF 患者血清素和血小板之间的变化趋势,本研究在此基础上进一步揭示了 DSS 患者血清素的主要消耗,而非血小板的消耗。本研究根据对严重登革热病有潜在影响的受干扰生化途径,利用血清代谢生物标记物面板对登革热和DHF/DSS进行了区分和分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoding Cytokine Networks in Ulcerative Colitis to Identify Pathogenic Mechanisms and Therapeutic Targets High-content microscopy and machine learning characterize a cell morphology signature of NF1 genotype in Schwann cells Tissue-specific metabolomic signatures for a doublesex model of reduced sexual dimorphism Sequential design of single-cell experiments to identify discrete stochastic models for gene expression. Environment-mediated interactions cause an externalized and collective memory in microbes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1