{"title":"Fabrication of pristine 2D heterostructures for scanning probe microscopy","authors":"James McKenzie, Nileema Sharma, Xiaolong Liu","doi":"10.1063/5.0213542","DOIUrl":null,"url":null,"abstract":"Material-by-design has been a long-standing aspiration that has recently become a reality. Such designer materials have been repeatedly demonstrated using the top-down approach of mechanical exfoliation and stacking, leading to a variety of artificial 2D heterostructures with new properties that are otherwise unattainable. Consequently, tremendous research frontiers in physics, chemistry, engineering, and life science have been created. While thousands of layered crystals exist in nature, only a few dozen of them with manageable chemical-stability have been made into heterostructures using this method. Moreover, experimental investigations of materials that have received limited exploration in the 2D realm, such as cuprates, halides, and perovskites, along with their heterostructures, have been fundamentally hindered by their rapid chemical degradation. Another critical challenge imposed by exfoliating and stacking 2D layers in ambient environment is the absorption of itinerant gas molecules that further contaminate sensitive 2D interfaces in the heterostructures. Such contamination and compromised material properties significantly hinder surface-sensitive local probes—scanning probe microscopy (SPM)—that often require nanometer to atomic scale surface cleanliness. In this article, we aim to provide a technical review of recent development toward 2D materials and heterostructure fabrication in more controlled environments that are suitable for SPM characterizations. These include the development of more efficient mechanical exfoliation and dry-transfer techniques, as well as the incorporation of 2D material exfoliation and transfer in inert gas, low vacuum, and, eventually, ultra-high vacuum environments. Finally, we provide an outlook on the remaining challenges and opportunities in ultra-clean 2D material fabrication techniques.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":"61 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0213542","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Material-by-design has been a long-standing aspiration that has recently become a reality. Such designer materials have been repeatedly demonstrated using the top-down approach of mechanical exfoliation and stacking, leading to a variety of artificial 2D heterostructures with new properties that are otherwise unattainable. Consequently, tremendous research frontiers in physics, chemistry, engineering, and life science have been created. While thousands of layered crystals exist in nature, only a few dozen of them with manageable chemical-stability have been made into heterostructures using this method. Moreover, experimental investigations of materials that have received limited exploration in the 2D realm, such as cuprates, halides, and perovskites, along with their heterostructures, have been fundamentally hindered by their rapid chemical degradation. Another critical challenge imposed by exfoliating and stacking 2D layers in ambient environment is the absorption of itinerant gas molecules that further contaminate sensitive 2D interfaces in the heterostructures. Such contamination and compromised material properties significantly hinder surface-sensitive local probes—scanning probe microscopy (SPM)—that often require nanometer to atomic scale surface cleanliness. In this article, we aim to provide a technical review of recent development toward 2D materials and heterostructure fabrication in more controlled environments that are suitable for SPM characterizations. These include the development of more efficient mechanical exfoliation and dry-transfer techniques, as well as the incorporation of 2D material exfoliation and transfer in inert gas, low vacuum, and, eventually, ultra-high vacuum environments. Finally, we provide an outlook on the remaining challenges and opportunities in ultra-clean 2D material fabrication techniques.
期刊介绍:
APL Materials features original, experimental research on significant topical issues within the field of materials science. In order to highlight research at the forefront of materials science, emphasis is given to the quality and timeliness of the work. The journal considers theory or calculation when the work is particularly timely and relevant to applications.
In addition to regular articles, the journal also publishes Special Topics, which report on cutting-edge areas in materials science, such as Perovskite Solar Cells, 2D Materials, and Beyond Lithium Ion Batteries.