{"title":"Variable selection for both outcomes and predictors: sparse multivariate principal covariates regression","authors":"Soogeun Park, Eva Ceulemans, Katrijn Van Deun","doi":"10.1007/s10994-024-06520-3","DOIUrl":null,"url":null,"abstract":"<p>Datasets comprised of large sets of both predictor and outcome variables are becoming more widely used in research. In addition to the well-known problems of model complexity and predictor variable selection, predictive modelling with such large data also presents a relatively novel and under-studied challenge of outcome variable selection. Certain outcome variables in the data may not be adequately predicted by the given sets of predictors. In this paper, we propose the method of Sparse Multivariate Principal Covariates Regression that addresses these issues altogether by expanding the Principal Covariates Regression model to incorporate sparsity penalties on both of predictor and outcome variables. Our method is one of the first methods that perform variable selection for both predictors and outcomes simultaneously. Moreover, by relying on summary variables that explain the variance in both predictor and outcome variables, the method offers a sparse and succinct model representation of the data. In a simulation study, the method performed better than methods with similar aims such as sparse Partial Least Squares at prediction of the outcome variables and recovery of the population parameters. Lastly, we administered the method on an empirical dataset to illustrate its application in practice.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"2018 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10994-024-06520-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Datasets comprised of large sets of both predictor and outcome variables are becoming more widely used in research. In addition to the well-known problems of model complexity and predictor variable selection, predictive modelling with such large data also presents a relatively novel and under-studied challenge of outcome variable selection. Certain outcome variables in the data may not be adequately predicted by the given sets of predictors. In this paper, we propose the method of Sparse Multivariate Principal Covariates Regression that addresses these issues altogether by expanding the Principal Covariates Regression model to incorporate sparsity penalties on both of predictor and outcome variables. Our method is one of the first methods that perform variable selection for both predictors and outcomes simultaneously. Moreover, by relying on summary variables that explain the variance in both predictor and outcome variables, the method offers a sparse and succinct model representation of the data. In a simulation study, the method performed better than methods with similar aims such as sparse Partial Least Squares at prediction of the outcome variables and recovery of the population parameters. Lastly, we administered the method on an empirical dataset to illustrate its application in practice.
期刊介绍:
Machine Learning serves as a global platform dedicated to computational approaches in learning. The journal reports substantial findings on diverse learning methods applied to various problems, offering support through empirical studies, theoretical analysis, or connections to psychological phenomena. It demonstrates the application of learning methods to solve significant problems and aims to enhance the conduct of machine learning research with a focus on verifiable and replicable evidence in published papers.