Jia-Jun Hu
(, ), Jia-Qi Liang
(, ), Zhi-Ping Yan
(, ), Hua-Xiu Ni
(, ), Xiang-Ji Liao
(, ), You-Xuan Zheng
(, )
{"title":"One-shot synthesis of heavy-atom-modified carbazole-fused multi-resonance thermally activated delayed fluorescence materials","authors":"Jia-Jun Hu \n (, ), Jia-Qi Liang \n (, ), Zhi-Ping Yan \n (, ), Hua-Xiu Ni \n (, ), Xiang-Ji Liao \n (, ), You-Xuan Zheng \n (, )","doi":"10.1007/s40843-024-3008-8","DOIUrl":null,"url":null,"abstract":"<div><p>Efficient multi-resonance thermally activated delayed fluorescence (MR-TADF) materials hold significant potential for applications in organic light-emitting diodes (OLEDs) and ultra-high-definition displays. However, the stringent synthesis conditions and low yields typically associated with these materials pose substantial challenges for their practical applications. In this study, we introduce an innovative strategy that involves peripheral modification with sulfur and selenium atoms for two materials, CFDBNS and CFDBNSe. This approach enables a directed one-shot borylation process, achieving synthesis yields of 66% and 25%, respectively, while also enhancing reverse intersystem crossing rates. Both emitters exhibit ultra-narrowband sky-blue emissions centered around 474 nm, with full width at half maximum (FWHM) values as narrow as 19 nm in dilute toluene solutions, along with high photoluminescence quantum yields of 98% and 99% in doped films, respectively. The OLEDs based on CFDBNS and CFDBNSe display sky-blue emissions with peaks at 476 and 477 nm and exceptionally slender FWHM values of 23 nm. Furthermore, the devices demonstrate remarkable performances, achieving maximum external quantum efficiencies of 24.1% and 27.2%. This work presents a novel and straightforward approach for the incorporation of heavy atoms, facilitating the rapid construction of efficient MR-TADF materials for OLEDs.</p></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 9","pages":"2789 - 2795"},"PeriodicalIF":6.8000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3008-8","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient multi-resonance thermally activated delayed fluorescence (MR-TADF) materials hold significant potential for applications in organic light-emitting diodes (OLEDs) and ultra-high-definition displays. However, the stringent synthesis conditions and low yields typically associated with these materials pose substantial challenges for their practical applications. In this study, we introduce an innovative strategy that involves peripheral modification with sulfur and selenium atoms for two materials, CFDBNS and CFDBNSe. This approach enables a directed one-shot borylation process, achieving synthesis yields of 66% and 25%, respectively, while also enhancing reverse intersystem crossing rates. Both emitters exhibit ultra-narrowband sky-blue emissions centered around 474 nm, with full width at half maximum (FWHM) values as narrow as 19 nm in dilute toluene solutions, along with high photoluminescence quantum yields of 98% and 99% in doped films, respectively. The OLEDs based on CFDBNS and CFDBNSe display sky-blue emissions with peaks at 476 and 477 nm and exceptionally slender FWHM values of 23 nm. Furthermore, the devices demonstrate remarkable performances, achieving maximum external quantum efficiencies of 24.1% and 27.2%. This work presents a novel and straightforward approach for the incorporation of heavy atoms, facilitating the rapid construction of efficient MR-TADF materials for OLEDs.
期刊介绍:
Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.