Differentiation of Cinchonine and Cinchonidine Derivatives Through 13C NMR Analysis of the Quinuclidine Ring

IF 1.1 4区 物理与天体物理 Q4 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL Applied Magnetic Resonance Pub Date : 2024-07-20 DOI:10.1007/s00723-024-01687-3
Denilson F. Oliveira, Alan R. T. Machado, Mariana G. Aguilar, Abraão J. S. Viana
{"title":"Differentiation of Cinchonine and Cinchonidine Derivatives Through 13C NMR Analysis of the Quinuclidine Ring","authors":"Denilson F. Oliveira,&nbsp;Alan R. T. Machado,&nbsp;Mariana G. Aguilar,&nbsp;Abraão J. S. Viana","doi":"10.1007/s00723-024-01687-3","DOIUrl":null,"url":null,"abstract":"<div><p>With a view to developing a procedure for the differentiation of cinchonine derivatives from cinchonidine derivatives by NMR analysis, experimental data on cinchonine and cinchonidine, after their dissolution in different solvents (CDCl<sub>3</sub>, CD<sub>3</sub>OD and DMSO-<i>d</i><sub><i>6</i></sub>), were compared with theoretical data, originating from different methodologies: DP4, DP4+ , <i>J</i>-DP4 and ANN. Taking into account the lower computational consumption, as well as the greater efficiency in differentiation, the method selected was the trained artificial neural networks (ANN), which considered only the <sup>13</sup>C data from the quinuclidine ring. The method successfully differentiated derivatives originating from OH group protection in ester and ether forms; replacement of the OH group by F and NH<sub>2</sub>; insertions of N<sub>3</sub>, 1<i>H</i>-1,2,3-triazol-1-yl and CH<sub>3</sub>O groups, linked to the quinoline ring; conversion of the vinyl group to the 1-benzyl-1<i>H</i>-1,2,3-triazol-4-yl; and of hydrogenation, dehydrogenation, and bromination of the vinyl group. In all cases the application of the ANN method succeeded in differentiation of cinchonine from cinchonidine derivatives.</p></div>","PeriodicalId":469,"journal":{"name":"Applied Magnetic Resonance","volume":"55 11","pages":"1377 - 1388"},"PeriodicalIF":1.1000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Magnetic Resonance","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00723-024-01687-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

With a view to developing a procedure for the differentiation of cinchonine derivatives from cinchonidine derivatives by NMR analysis, experimental data on cinchonine and cinchonidine, after their dissolution in different solvents (CDCl3, CD3OD and DMSO-d6), were compared with theoretical data, originating from different methodologies: DP4, DP4+ , J-DP4 and ANN. Taking into account the lower computational consumption, as well as the greater efficiency in differentiation, the method selected was the trained artificial neural networks (ANN), which considered only the 13C data from the quinuclidine ring. The method successfully differentiated derivatives originating from OH group protection in ester and ether forms; replacement of the OH group by F and NH2; insertions of N3, 1H-1,2,3-triazol-1-yl and CH3O groups, linked to the quinoline ring; conversion of the vinyl group to the 1-benzyl-1H-1,2,3-triazol-4-yl; and of hydrogenation, dehydrogenation, and bromination of the vinyl group. In all cases the application of the ANN method succeeded in differentiation of cinchonine from cinchonidine derivatives.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过对奎宁环的 13C NMR 分析区分辛可宁和辛可尼丁衍生物
为了开发一种通过核磁共振分析区分金鸡纳衍生物和金鸡纳啶衍生物的程序,我们将金鸡纳和金鸡纳啶在不同溶剂(CDCl3、CD3OD 和 DMSO-d6)中溶解后的实验数据与源自不同方法的理论数据进行了比较:DP4、DP4+、J-DP4 和 ANN。考虑到较低的计算消耗和更高的区分效率,选择的方法是训练有素的人工神经网络(ANN),它只考虑了来自奎宁环的 13C 数据。该方法成功地区分了以下衍生物:酯和醚形式的 OH 基保护衍生物;用 F 和 NH2 取代 OH 基的衍生物;插入 N3、1H-1,2,3-三唑-1-基和 CH3O 与喹啉环相连的衍生物;将乙烯基转化为 1-苄基-1H-1,2,3-三唑-4-基的衍生物;以及乙烯基的氢化、脱氢和溴化衍生物。在所有情况下,ANN 方法都能成功地将金鸡纳从金鸡纳啶衍生物中区分出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Magnetic Resonance
Applied Magnetic Resonance 物理-光谱学
CiteScore
1.90
自引率
10.00%
发文量
59
审稿时长
2.3 months
期刊介绍: Applied Magnetic Resonance provides an international forum for the application of magnetic resonance in physics, chemistry, biology, medicine, geochemistry, ecology, engineering, and related fields. The contents include articles with a strong emphasis on new applications, and on new experimental methods. Additional features include book reviews and Letters to the Editor.
期刊最新文献
Deep-Learning Segmentation of Bleomycin-Induced Pulmonary Fibrosis in Rats Using U-Net 3 + by 3D UTE-MRI Influence of Ge concentration on magnetic properties of \(\hbox {Co}_{(1-x)} \hbox {Ge}_{x}\) thin films A Method for Analyzing Data from 1- and 2-Dimensional Relaxation and Diffusion NMR Experiments by Determination of their Expectation Values and Standard Deviations Photocurrent EDMR Measurement and Carrier Behavior of TIPS-Pentacene Under FET Device Operation Nitroxide Spin Labels for Exploring Relationships Between Molecular Structure, Microenvironment and EPR Parameters: A Mini-review Dedicated to Carlo Corvaja
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1