{"title":"FVF-BIoT: a formal verification framework for blockchain-based IoT authentication","authors":"Jiaqi Yin, Yuan Fei","doi":"10.1007/s11219-024-09691-3","DOIUrl":null,"url":null,"abstract":"<p>Traditional IoT authentication methods, often centralized and reliant on a Trusted Third Party (TTP), face issues like high communication costs and vulnerability to data loss. Blockchain-based Internet of Things (IoT) authentication can effectively solve the problems brought by traditional IoT authentication. Because the authentication schemes are usually deployed on a large number of IoT devices it would be extremely expensive when there are issues to be fixed after the authentication schemes is deployed. Performing verification early at design time can alleviate this problem. To focus on these requirements, this article proposes a formal verification framework for blockchain-based IoT authentication (FVF-BIoT). Specifically, we design data type mapping and the conversion of elements in smart contracts for the authentication. Then we formalize the smart contracts into formal models in the interactive theorem prover Coq. Several algorithms are presented for the conversion of the smart contracts and the generation of examples. Examples and security properties related to contracts are described in the form of theorems, which are also proved by Coq. Through a case study, we not only demonstrate the effectiveness of the FVF-BIoT framework in ensuring the security and reliability of blockchain technology for IoT authentication but also highlight its innovative integration of formal verification processes. This distinctly addresses the previously unmet need for rigorous, mathematically proven security validations in the design and deployment of blockchain-based IoT authentication methods.</p>","PeriodicalId":21827,"journal":{"name":"Software Quality Journal","volume":"11 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Quality Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11219-024-09691-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional IoT authentication methods, often centralized and reliant on a Trusted Third Party (TTP), face issues like high communication costs and vulnerability to data loss. Blockchain-based Internet of Things (IoT) authentication can effectively solve the problems brought by traditional IoT authentication. Because the authentication schemes are usually deployed on a large number of IoT devices it would be extremely expensive when there are issues to be fixed after the authentication schemes is deployed. Performing verification early at design time can alleviate this problem. To focus on these requirements, this article proposes a formal verification framework for blockchain-based IoT authentication (FVF-BIoT). Specifically, we design data type mapping and the conversion of elements in smart contracts for the authentication. Then we formalize the smart contracts into formal models in the interactive theorem prover Coq. Several algorithms are presented for the conversion of the smart contracts and the generation of examples. Examples and security properties related to contracts are described in the form of theorems, which are also proved by Coq. Through a case study, we not only demonstrate the effectiveness of the FVF-BIoT framework in ensuring the security and reliability of blockchain technology for IoT authentication but also highlight its innovative integration of formal verification processes. This distinctly addresses the previously unmet need for rigorous, mathematically proven security validations in the design and deployment of blockchain-based IoT authentication methods.
期刊介绍:
The aims of the Software Quality Journal are:
(1) To promote awareness of the crucial role of quality management in the effective construction of the software systems developed, used, and/or maintained by organizations in pursuit of their business objectives.
(2) To provide a forum of the exchange of experiences and information on software quality management and the methods, tools and products used to measure and achieve it.
(3) To provide a vehicle for the publication of academic papers related to all aspects of software quality.
The Journal addresses all aspects of software quality from both a practical and an academic viewpoint. It invites contributions from practitioners and academics, as well as national and international policy and standard making bodies, and sets out to be the definitive international reference source for such information.
The Journal will accept research, technique, case study, survey and tutorial submissions that address quality-related issues including, but not limited to: internal and external quality standards, management of quality within organizations, technical aspects of quality, quality aspects for product vendors, software measurement and metrics, software testing and other quality assurance techniques, total quality management and cultural aspects. Other technical issues with regard to software quality, including: data management, formal methods, safety critical applications, and CASE.